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INTRODUCTION 

Sample size calculation plays an important role in the 

planning phase in any research area such as agriculture, 

medical science, economics, and other fields of research. 

Researchers would like to minimize experiment costs by 

using a minimal required sample size to detect a practical 

meaningful effect with a certain power. In testing the 

difference of two independent samples for continuous 

data, apparently, the most popular method is the two-

sample t test. This test is more powerful and has the 

optimal power among all unbiased tests.1 Although the 

normality will be met for large samples (usually 30 

observations or more) by the central limit theorem, in 

reality it is difficult to meet the strict assumptions of 

normality and equal variances. Also, data distribution is 

rarely exact normal in practice. Thus, the result of the 

unpaired t test is unreliable especially for small sample 

sizes, heavy-tailed, severely skewed distributions, or 

outliers (i.e., abnormal extreme values). On the other 

hand, for categorical (i.e., ordinal and nominal) data, t 

tests is not appropriate. For these situations, the 

nonparametric rank-based tests are much preferred. In 

this paper, we will study rank-based nonparametric tests 

for two independent samples from the same distribution 

but with a location shift for the second sample. 

In testing whether two independent samples come from 

the same distribution, nonparametric statistical tests are 

very useful. These methods do not require any specific 

form for the sampling distribution and do not make 

normality assumption. Oftentimes, we prefer median 

(instead of mean) for location shift distribution which is 

strongly skewed (either to the right or to the left), 

asymmetric (e.g., exponential distribution), long-tailed 

(e.g., double-exponential distribution), heavy-tailed (e.g., 

t(3) distribution). In addition, the rank-based 

nonparametric methods do not use the actual values of 
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the observations; instead, they are based on the rank 

(place in order) of each observation. Thus, the results of 

inference are not sensitive to outliers. 

Moreover, there is no sample size requirement for the 

exact Mann-Whitney U test (a.k.a. Wilcoxon-Mann-

Whitney test, or WMW test for short) to be valid. 

However, for the asymptotic WMW test to be valid, 

Siegel and Castellan recommended the following: m = 3 

or 4 and n > 12; m > 4, and n > 10, where m and n are the 

sample sizes for the two groups, respectively.2 Therefore, 

it is primarily useful for data with small sample sizes 

(<20) and extremely small sample sizes (i.e., m, n in the 

range of 2 to 6). Finally, the WMW test is also widely 

applied for the ordinal data. 

More sophisticated nonparametric tests such as WMW 

test has been developed in many years ago. Neither 

distributional assumption nor normality assumption is 

employed for the data and hence is preferable. In this 

paper, we focus on five rank-based approaches to 

estimate power and sample size for two-sample using 

either linear rank tests or asymptotic WMW tests. These 

five methods are Lehmann, Noether, Wang et al, Shieh et 

al., and Doll and Klein.3-7 The method of Doll and Klein 

is the two-sample linear rank tests approach and the other 

approaches use different approximations for the WMW 

test statistic. Details of the five methods are described in 

the section “methods” below. The aim of this paper is to 

assess their advantages and disadvantages about which 

approach is the most reliable and likely to estimate the 

minimum sample size needed in achieving power at a 

given level of significance for researches. More 

importantly, no research to date has compared the 

asymptotic WMW tests together with a linear rank test on 

a common ground. 

Current paper is organized as follows. In the section 

“methods”, the modelling of the local shift is introduced 

(see the subsection A). Five rank-based nonparametric 

methods for sample size calculation are described in the 

subsection B before an extensive simulation study is 

presented in the subsection C. The findings are illustrated 

by simulating results of the five methods in the section 

“results”. In the section “discussion”, a brief discussion 

of the finding is discussed in the use of these five 

methods. We close with a short conclusion in the section 

“conclusion”. In this paper, we only consider the 2 

independent samples (2-sided) on continuous data for 

normal location shift distribution. In practice, there are, 

of course, other test problems such as 1-sided test or 

matched pair sample test that might have some specific 

applications which we will not cover.  

METHODS 

This section provides a brief description of the five 

methods for the power and sample size calculation based 

on the rank-based tests on continuous data. Doll and 

Klein’s method for power calculation uses the 

generalized linear rank test statistics based on the score 

generating functions. The other four methods use the 

traditional normal approximation for the power 

calculation based on the asymptotic WMW test statistic 

for large samples. Our investigation only focuses on these 

conventional methods because they all belong to the 

linear rank tests.  

For most practical applications, the assumption of the 

approximate normality of the Wilcoxon test statistics is 

sufficiently accurate and adequate for comparing two 

samples when the sample sizes of the two independent 

samples are large. In fact, the basic assumption is the 

same for all the methods investigated. 

Models of location shift 

In what follows, we begin with the data assuming the 

distributions of two groups have the same shape and only 

differ by a location shift. Suppose 𝑋1, … , 𝑋𝑚 and 

𝑌1, … , 𝑌𝑛 are two independent random samples with 

continuous cumulative distribution functions 𝐹𝑋 and 𝐹𝑌, 

respectively, where, the values of 𝑋 and 𝑌 are mutually 

independent and identically distributed (i.i.d.). The 

location shift modelling assumes the same shape except 

by alocation shift 𝜃 with probability density functions 

(pdf) 𝑓𝑋 and 𝑓𝑌. The location shift 𝜃 for the case of 

exponential and normal distributions of two samples is 

shown in (Figure 1). 

 

Figure 1: Location shift model for the same shape and 

spread by a shift of 𝛉, A) exponential distributions; B) 

normal distributions. 

According to the nature of the data and to simplify the 

complicated procedure, without loss of generality, some 

further assumptions are made as follows: the samples 

sizes m and n are the same (i.e., m=n) to maximize the 

power of the hypothesis test.8 Happ et al also 

recommended a balance design for the WMW test.9 Both 

𝐹𝑋 and 𝐹𝑌 must have the continuous distributions of the 

same shape and spread. B¨urkner et al showed that 

symmetric, continuous distributions under a location shift 

model that is optimal for the WMW test.10 The location 

shift (𝜃 ≥ 0) model follows a normal distribution, that is, 

𝐹𝑋(𝑥) = 𝐹𝑌(𝑥 − 𝜃),∀𝑥, 𝑦. By using the normal model, 

we can pursue a unified approach that can be used of 

midranks in the formulas for the test statistics.11,12 
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Five methods for power and sample size calculation 

This section provides a brief description of the five 

methods for the power and sample size calculation based 

on the rank-based tests on continuous data. Doll and 

Klein’s method for power calculation uses the 

generalized linear rank test statistics based on the score 

generating functions. The other four methods use the 

traditional normal approximation for the power 

calculation based on the asymptotic WMW test statistic 

for large samples. Our investigation only focuses on these 

conventional methods because they all belong to the 

linear rank tests.  

For most practical applications, the assumption of the 

approximate normality of the Wilcoxon test statistics is 

sufficiently accurate and adequate for comparing two 

samples when the sample sizes of the two independent 

samples are large. In fact, the basic assumption is the 

same for all the methods investigated.  

In practical applications, it is of interest to investigate 

whether a shift (or difference) in location has occurred 

between two independent samples after conducting an 

experiment. Let 𝑋1, … , 𝑋𝑚 be stochastically independent, 

identically distributed (i.i.d.) with continuous cumulative 

distribution function (𝑐𝑑𝑓) 𝐹𝑋 and 𝑌1, … , 𝑌𝑛 be 

stochastically i.i.d. with continuous cdf 𝐹𝑌. We consider 

independent samples such that 𝑋𝑖 and 𝑌𝑗 are stochastically 

independent for 𝑖 =  1, 2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛. 

Further, assuming the distributions of two samples have 

the same shape but differ by a shift in location, that is, 

𝐹𝑋(𝑥) = 𝐹𝑌(𝑥 − θ), where θ is a location shift. A two-

sided hypothesis of θ can be stated as  

𝐻0: 𝜃 = 0 vs. 𝐻𝑎: 𝜃 ≠ 0 

The Wilcoxon’s rank sum test is frequently used for the 

above two independent samples test. This test is a 

nonparametric test based on the ranks of the individual 

observations rather than on their actual values. The Man-

Whiney test statistic (a.k.a. WMW statistic) is given by  

W = ∑ ∑

n

j=1

ψ(yj − yi) … . eq. 1

m

i=1

 

Where 𝜓 (𝑦𝑗 − x𝑖) = 1 if 𝑦𝑗 − 𝑥𝑖 > 0 and 0 otherwise. 

The assumption of the two independent samples, the 

hypothesis of 𝜃, and the WMW statistic will be used in 

describing the five methods below unless stated 

otherwise. 

Lehmann method  

Lehmann first introduced the asymptotic power and 

sample size estimation based on the Wilcoxon rank sum 

test. Given two i.i.d. samples X and Y, the hypothesis is 

to test if θ = 0 for such two samples. For large m and n, 

the WMW test statistic’s asymptotic normality in 

Equation (1) can be modified under the alternative 

hypothesis 𝐻𝑎. Thus, if the null hypothesis (𝐻0: θ = 0) is 

rejected, the power for the WMW test against the 

alterative hypothesis (𝐻𝑎: θ ≠ 0) can be approximated by 

Power = 1 − β ≈ Φ (√
12mn

N + 1
θf ∗(0) − zα/2)  eq. 2 

 

where 𝑓∗(0) is the density of the distribution of 

difference of the two groups (X and Y) evaluated at zero 

and 𝑓∗(0) = 𝐸[𝑓(𝑋1)].  

For 𝑟 = 𝑚/𝑛, the sample size can be solved from 

Equation 2. 

n ≈
(zα/2 + zβ)

2
(1 + r)

12θ2(f ∗(0))
2

r
 and m = rn … . . eq. 3 

Noether method  

Noether proposed a sample size determination method 

based on the Mann-Whitney statistic U for the two-

sample Wilcoxon rank sum test given the two i.i.d. 

samples of X and Y. For large m and n, the assumption of 

the approximate normality of the test statistics is used for 

Equation (1) at the α asymptotic significance level. In 

addition, assuming the variance of the WMW statistic is 

the same under both hypotheses of 𝐻0 and 𝐻𝑎. Noether 

provided the approximate power of the WMW test under 

𝐻𝑎 that θ ≠ 0 for 𝑚 = 𝑟𝑛: 

Power = 1 − β ≈ Φ (√
12rn2

n + rn + 1
(p1 − 0.5) − zα/2) 

≈ Φ (√
12rn

r + 1
(p1 − 0.5) − zα/2)  eq. 4 

Where the last approximation in Equation (4) is obtained 

by ignoring the “+1” in the denominator and p1 =
P(X1 < Y1) = ∫ FXdFY. 

Hence, by solving the above equation, the sample size 

required to achieve the target power can be obtained as 

n ≈
(zα 2⁄ +zβ)

2
(1+r)

12(p1−0.5)2r
 eq. 5 

Zhao et al. further generalized Noether’s method so that it 

can be applied to continuous data as well as ordinal data 

(with or without ties).13 
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Wang et al method  

Wang et al. derived an explicit sample size formula for 

Wilcoxon’s rank sum test. They assumed two 

independent random samples 𝑜𝑓 𝑋 and 𝑌as described in 

the subsection “models of location shift” follow the same 

continuous distribution except a location shift θ. The 

hypotheses to be tested are 𝐻0: 𝜃 = 0 versus 𝐻𝑎: 𝜃 ≠ 0. 

The test statistic W is the sum of ranks in Y group, where 

ranks are based on the combined observation with rank 1 

to 𝑚 + 𝑛. For large m and n, the test statistic W can be 

assumed as asymptotically standard normal (𝑍∗)  

Z∗ =
W − μW

σW
 eq. 6 

 

Where;  

μ
W

=
n(n + 1)

2
+ mnp1 

σW
2 = mnp1(1 − p1) + mn(m − 1)(p2 − p1

2)
+ mn(n − 1)(p3 − p1

2) 

p1 = P(y1 ≥ x1),  p2 = P(y1 ≥ x1 and y1 ≥ x2),  p3

= P(y1 ≥ x1 and y2 ≥ x1) 

For r = m/𝑛, the power of the test can be approximate by 

Power = 1 − β = Φ (
zα/2√r(r+1)/12+√nr(1/2−p1)

√r2(p1−p1
2)+r(p3−p1

2)

)  eq. 7  

Thus, by solving the above equation, the sample size 

needed to achieve the target power can be obtained as 

m = rn, n =
(zα/2√r(r+1)/12+zβ√r2(p2−p1

2)+r(p3−p1
2))

2

r2(1/2−p1)2  eq. 8  

Readers can consult their paper for more details.5 

Shieh et al method  

Shieh et al introduced explicit sample size and power 

formulas for the WMW test. The derivation of sample 

size and power formulas is based on the asymptotic 

normal distribution of the WMW statistic with an exact 

variance large-sample method. They assumed two 

independent random samples of X and 𝑌 as described in 

the subsection “models of location shift”. The hypotheses 

to be tested are 𝐻0: θ = 0 versus 𝐻𝑎: θ ≠ 0. The Mann-

Whitney form of the MWM statistic is define as  

W = ∑ ∑

n

j=1

ψ(yj − yi)

m

i=1

, eq. 9 

Where 𝜓(𝑦𝑗 − x𝑖) = 1 if 𝑦𝑗 − 𝑥𝑖 > 0 and 0 otherwise. 

They found that as 𝑛 and 𝑚 tend to infinity, (𝑊 − 𝜇)/𝜎 

tends to the standard normal distribution (i.e., 𝑁(0, 1)) 

with 𝜇 = 𝑚𝑛𝑝1 and 𝜎2 = 𝑚𝑛𝑝1(1 − 𝑝1) +
𝑚𝑛(𝑛 − 1)(𝑝2 − 𝑝1

2) + 𝑚𝑛(𝑚 − 1)(𝑝3 − 𝑝1
2), where 

𝑝1 = 𝑃(𝑋1 < 𝑌1) = ∫ FY𝑑FX , 𝑝2 = 𝑃(𝑋1 < 𝑌1 ∩ 𝑋1 <
𝑌2) = ∫(1 − FX)2 𝑑FY and 𝑝3 = 𝑃(𝑋1 < 𝑌1 ∩ 𝑋2 <

𝑌1) = ∫ FY
2dFX. 

Finally, the power of the test can be approximated by  

Power = 1 − β ≈ Φ (
μ − μ0 − z0σo

σ
) . eq. 10 

where 𝜇0 =
𝑛𝑚

2
 and 𝜎0

2 =
𝑚𝑛(𝑁+1)

12
. The sample size 

needed to achieve the target power can be obtained by 
solving Equation (10) using numerical methods such as 
bisection method or Newton-Raphson method. 
Alternatively, sample size can be obtained by a linear 
search method due to power increases monotonically as 
sample size increases. Readers can consult their paper for 
more details.6 

Doll and Klein method  

Doll and Klein introduced a new sample size analysis 

method for arbitrary linear rank tests for location shifts of 

continuous distributions.7 The WMW test is a special 

case of the linear rank tests. The method is based on 

linear rank tests’ asymptotic normality, while mean and 

variance can be expressed by score generating functions 

for large m and n. 

Finally, for 𝑚 = 𝑛, the power of the test can be expressed 

as  

Power = 1 − β ≈ 1 − Φ (zα/2 −

√
n

2
δσ

∫ ϕ(u)ϕ(u;f0)du
1

0

√∫ (ϕ(u)−ϕ)
21

0
du

)  + Φ (−zα/2 −

√
n

2
δσ

∫ ϕ(u)ϕ(u;f0)du
1

0

√∫ (ϕ(u)−ϕ)
21

0
du

) eq. 11 

The sample size needed to achieve the target power can 

be obtained by solving Equation (11) using numerical 

methods (e.g., bisection method or Newton-Raphson 

method). Because power increase monotonically as 

sample size increases, a straightforward linear search can 

also be used to obtain the sample size. For more detailed 

information, readers can consult their paper.7 
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Formulas for the five methods 

Using the five methods for the asymptotic WMW test 

described above, we list systematically their simplified 

explicit formulas of the power and sample size 

calculation in (Table 1) corresponding to both equal and 

unequal sample sizes with practical assumptions. 

However, as noted, it is not always possible to come with 

a closed-form formula for the sample size (e.g., Shieh and 

Doll methods described above). Generally, an iterative 

numerical procedure can be applied to obtain the sample 

size whenever the explicit formula is not available. The 

flowchart of the iterative numerical procedure is 

illustrated in (Figure 2) for sample size determination 

when a specific power formula is given. In addition, the 

notations in (Table 1) have been adjusted for the ease of 

understanding, comparison, and applications. 

Table 1: Formulas of power and sample size calculations for five methods using WMW test. 

Methods 
Sample sizes (n, m) and power (1−𝛃) assumed a normal location shift model 

𝐫 ≠ 𝟏 (𝐨𝐫 𝐧 ≠ 𝐦) 𝐫 = 𝟏 (𝐨𝐫 𝐧 = 𝐦) 

Lehmann (1975) 

 

1 − β ≈  [√12nB θ
1

2√π
− zα/2] 

n ≈  
π(zα 2⁄ + zβ)2

3Bθ2
 and m = rn 

where B = r/(1 + r);  π = 3.14159 

1 − β ≈  [√6n θ
1

2√π
− zα/2] 

n ≈  
2π(zα 2⁄ + zβ)2

3θ2
 and m = n 

Noether (1987) 

 

1 − β ≈ [√12nB (p1 − 0.5) − zα/2] 

n ≈  
(zα 2⁄ + zβ)2

12B(p1 − 0.5)2
 and m = rn 

where  p1 = P(Y1 ≥ X1) = 0.5 +
θ

2σ√π
 

σ = σX  =  σY  = 1 

1 − β ≈ [√6n (p1 − 0.5) − zα/2] 

n ≈  
(zα 2⁄ + zβ)2

6(p1 − 0.5)2
 and m = n 

Wang et al (2003) 

1 − β ≈ {
1

G
[√

12nB

r
 (p1 − 0.5) − zα/2]} 

n ≈  
(zα 2⁄ + zβG )2r

12B(p1 − 0.5)2
  and m = rn 

where G = √B [(p2  −  p1
2)/r + (p3  −  p1

2)] 
p2 = P(Y1 ≥  X1 and Y1 ≥ X2);  

p3 = P(Y1 ≥  X1 and Y2 ≥ X1) 

1 − β ≈  {
√6n(p1 − 0.5) − zα/2

G^
} 

n ≈  
(zα 2⁄ + zβG^)2

6(p1 − 0.5)2
 and m = n 

where G^ =

√0.5[(p2  −  p1
2) + (p3  −  p1

2)] 

Shieh et al (2006) 

1 − β ≈  (
μ − μ0  −  zα/2 μ0

σ
) 

n → rely on the power formula above with 

numerically algorithm; m = rn 

Where μ0  =  rn2 2⁄ ; σ0 =

√rn2(n + rn + 1) 12⁄  

μ =  rn2p1 

σa = √rn2 + (1 − n)S2 + (rn − 1)S3] 
S1 =  p1 − p1

2;    S2 =  p2 − p1
2;    S3 =  p3 − p1

2 

1 − β ≈  (
μ − μ0  −  zα/2 μ0

σa
) 

n → rely on the power formula above with 

numerically algorithm; m = n 

Where μ0  =  n2 2⁄ ; σ0 = √n2(2n + 1) 12⁄  

μ = n2p1 

σa = √n2[S1 + (1 − n)(S2 + S3)] 

Doll and Klein  

(2019) 

1 − β ≈ 2 −(zα/2  −  D) - (zα/2  + D) 

n → rely on the power formula above with 

numerically algorithm; m = rn 

where: D =  √n 2 ⁄ θ (0.2821 √1/12⁄ )  

1 − β ≈ 2 −(zα/2 − D^) −(zα/2 + D^) 

n → rely on the power formula above with 

numerically algorithm; m = n 

where: D^ = √n 2⁄ θ 

𝛼 and 𝛽 are fixed probabilities of the type-I and type-II error rates, respectively. 

𝑧𝛼 2⁄ and 𝑧𝛽denote the upper 𝛼 2⁄  th and 𝛽th quantile of the standard normal distribution 
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Figure 2: An iterative numerical process to determine the required sample size for a given target power. 

Simulation study 

To illustrate the applications of the five methods for 
sample size and power calculations for the WMW test 
described in the subsection “five methods for power and 
sample size calculation”, a simulation study was 
performed to study the properties of these five methods.  

The aim of the simulation study primarily focuses on two 
aspects: evaluate the differences of the sample sizes 
obtained from the formulas and compare them to those 
from the simulation under various powers and shifts. 
Assess the accuracy of the approximate powers obtained 
from the five methods and compare to the almost true 
powers from the simulation when the sample sizes are 
given. In current paper, simulation technique is used to 
compute sample sizes and powers. The simulation is 
implemented in R software using the Wilcox test function 
from R stats package.14 The simulation results are served 

as a reference (i.e., ground truth) for comparing the five 
methods under investigation.  

Simulation study design 

We performed the simulation study over a range of 
settings designed to consider the real-life circumstances 
frequently encountered in clinical research. As described 
in the subsection “models of location shift”, the 
corresponding two independent and identical normal 
distributions of X and Y for continuous data were 
generated. That is, X1, … , Xm~N(0,1) and 

Y1, … , Yn~N(θ, 1) are independent continuous random 

samples, and FY(x) = FX(x − θ) where FX(x) is the 

standard normal distribution so p1 = Φ(θ/√2) and p2 =
p3 = E[{Φ(Z + θ)}2] where Z~N(0,1). Without loss of 

generality, let the variances of X and Y be 1 (i.e., σX =
σY = 1). In nonparametric analysis, θ (or p1) is served as 
the effect size. The seven effect sizes (θ) considered in 
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this study are 0.2, 05, 0.8, 1.0, 1.2, 1.5 and 2.0. Four 
target powers are investigated (i.e., 
80%, 85%, 90%, and 95%). In this study, we paid more 

attention to the larger effect sizes (i.e., θ ≥ 1.0) for 
studying the cases of the smaller sample sizes. The 
purpose is to explore the behaviors of the five methods 
under study. For all simulation scenarios, we only used 2-
sided tests and a significance level of α = 0.05 with 
equal sample sizes (i.e., m=n), without loss of generality. 

In addition, the asymptotic approximate powers for these 
five methods are compared with the almost true power 
from the simulation to study the accuracy and reliability 
among these methods. In the simulation, the power of the 
WMW test was estimated by counting the number of 
cases when the hypothesis H0 was rejected and dividing it 

by the total number of simulations (N = 106). Flowchart 
for the power calculation using a Monte Carlo simulation 
is shown in (Figure 3).  

 

Figure 3: The power computation through a Monte Carlo simulation. 

Number of simulations 

The simulations were carried out with 106 replications 

for each of the 28 scenarios. The 106 simulations were 
used to make the Monte Carlo simulation error small 
enough. In general, simulation error is approximately 

proportional to 1/√106=0.001. In other words, the 
maximum Monte Carlo standard error of the simulated 
power is less than 0.001 in each scenario in this study. To 

justify the necessary use of 106 simulations for high 

accuracy, four numbers of simulations (i.e., 103, 104, 

105, and 106) are usedto show the corresponding 
accuracy for the case of 90% power. The powers for 
n=89 and n=90 are considered. A 95% confidence 
interval (CI) of the simulated power was constructed by a 
nonparametric bootstrapping method for each of sample 

size and number of simulation combinations. The 
variation of confidence intervals for different number of 
simulations is clearly seen in (Figure 4). The length of a 
confidence interval implies the corresponding precision. 
Shorter confidence interval means higher precision as in 

the case of N = 106. As depicted in (Figure 4) n = 90 is 
the required sample size of a target power of 90% but not 
n=89 when using 106 simulations. Performing 106 
simulations takes a lot of time even for a sample size of 
90. It takes longer time (e.g., a few hours) for larger 
sample sizes. Therefore, it is impractical to use in the 
case of a lot of scenarios needed to be considered. 
However, in studying the various properties of a method 
or methods, comparing methods, or verifying the validity 
of methods, simulation technique is a good and perhaps 
the only method to use for researchers. 
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RESULTS 

The results of the simulation will be presented in 2 

separate parts on sample size and power calculation for 

the five methods for the 28 settings described in the 

subsection “simulation study”. To simplify labelling and 

reference, let ns(pwrs) denote the sample size (power) 

obtained from the simulation and nL(pwrL), nN(pwrN) , 

nW(pwrW) , nSh(pwrSh), and nD(pwrD) denote the 

corresponding five methods (i.e., Lehmann, Noether, 

Wang, Shieh, and Doll) for sample size (power) 

calculation using asymptotic normal approximation. For 

convenience, the sample sizes or powers obtained from 

the five methods are referred to as “formula-based 

methods” hereafter.  

Required sample sizes 

The sample sizes obtained from the Monte Carlo 

simulations and the formula-based methods for the equal 

sample sizes (m = n ) case are shown in (Table 2). The 

formula based sample sizes as mentioned through terms 

(n(.) denoted for nL, nN , nW , nsh, and nD) were calcul-

ated from the formulas of the five methods and the 

simulation sample size (𝑛s) is obtained by applying the 

general sample size calculation algorithm (Table 1). The 

sample size deviations (𝑑(.)) between each of methods 

and 𝑛𝑠(i.e., the almost true sample sample) are also 

calculated. The formula-based sample sizes are in good 

agreement with that of simulated sample size whenever a 

small deviation is observed. In general, the deviation (𝑛(.) 

-𝑛𝑠) of either 1 or -1 is small enough to be regarded as no 

difference in practice. For small effect size (θ = 0.2), as 

expected, the required sample sizes are large and the 

deviations from 𝑛𝑠 across the powers for all methods 

except Noether’s method are large as well. Noether’s 

method has very small deviation values (0, 2, 0, -1) 

corresponding to the four target powers (80%, 85%, 90%, 

and 95%) while Wang’s method has larger deviation 

values (-10, -6, -16, and 13) for each target power. When 

θ = 0.5, the deviations of the sample sizes from 𝑛𝑠 are 

similar for the methods of Lehmann (-1, -1, -1, -1) and 

Shieh (0, -1, -1, 0) compared with the other three 

methods. Also, Noether’s method has a slightly large 

positive deviations (1, 2, 2, 3) but Wang’s method (-2, -1, 

-3, -2) has negative deviation which is in contrary to 

Noether’s for the target powers. Overall, for θ greater 

than or equal to 0.5, the sample sizes gradually declined 

especially it is dramatically reduced for θ changing from 

0.2 to 0.5. For illustrative purpose, the method ranking 

referred to the sample size calculated to each method is 

provided by the difference between 𝑛(.) and 𝑛𝑠. As a 

result, (Table 3) provides both the method rankings and 

the sum of the squared deviations (SSD), where SSD for 

each method is defined as:  

SSD = ∑ di
2

i=28

i=1
 eq. 12 

The SSD is the criterion used to rank performances of the 

five methods. Smaller SSD implies better performance. 

Thus, the smallest SSD has rank 1 and the second 

smallest SSD has rank 2, and so on. In addition, average 

ranks will be assigned in the case of tie. Results of 

ranking are shown in (Table 3) for the four target powers. 

In the power of 85% case, there is a tie situation (i.e., the 

SSD values of Lehmann and Shieh method are the same) 

and average rank of 1.5 is assigned to both methods. As 

can be seen in (Table 3), Shieh’s method has the first 

rank for power of 80%, 85%, and 90% and has the 

second rank for power of 95%. Lehmann’s method has 

the first rank for powers of 85% and 95%, the second 

rank for power of 90%, and the third rank for power of 

80%. Wang’s method has the fifth rank due to its larger 

deviations from the referenced sample size for all powers. 

It appears that the resulting sample sizes are not accurate 

enough. To demonstrate the precision of the sample size 

calculations for WMW tests visually, box plots of the 

overall deviations regardless of effect size (θ) and target 

power are shown in (Figure 5). As a graphical 

illustration, it is easy to see that the ordering of the 

precision for the sample size calculation is Shieh 

>Lehmann >Doll >Wang >Noether method. Overall, 

Shieh’s method is consistently superior to the other four 

methods and Noether’s method has a tendency to 

overestimate the sample sizes.  

Statistical power 

In this section, we show the estimation of powers in the 

simulation and the formula-based for the five methods 

across all 28 stimulation settings. The target powers are 

used for the sample size calculation based on 1 million 

simulations for each setting. By the simulation sample 

size (𝑛𝑠), the simulated (true) power (pwr𝑠) is estimated 

by a Monte Carlo method and the formula-based power is 

determined by the formulas of the five methods in (Table 

1). The algorithm of the simulated powers using the 

standardized WMW test statistics was described in the 

subsection “simulation study”. The results are given in 

(Table 4). Also, the percentage errors (e(.)) between the 

simulated powers and each of the formula-based powers 

as defined by Shieh are presented in (Table 4), where the 

e(.) is defined as;  

Percentage error = e(.) =
pwr(.) − pwrs

pwrs
 eq. 13 

Where (. ) denotes one of the methods (Lehmann, 

Noether, Wang, Doll,or Shieh).3-6 When θ is small (θ= 

0.2), the formula-based powers of the five methods are 

very close to the simulated power for a given large 

sample size (Table 4). The percentage errors of the five 

methods are very small and unimportant for small θ, 

where the eL, eSh, and eD corresponding Lehmann, Shieh, 

and Doll methods have small positive values especially 

the eL is very small; Noether’s method eN has a small 

negative value; the error is either negative or positive for 

Wang’s method (where eW is negative for 𝑛𝑠  =  414 or 
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554 and is positive for 𝑛𝑠  =  472 or 686). However, 

when θ is median or large (θ= 0.5 or θ= 0.8), we observe 

that the powers of the five methods are gradually far 

away from the simulated powers and the values of e(.) 

increases as well. Moreover, when θ is extremely large, 

the powers of the five methods compared with the 

simulated powers are considerably inconsistent and give 

a large positive or negative error, which the values of 

error (e(.) = ~±4%, ~±5%, ~±8%, and ~±14%) across 

all the methods of effect size θof 1, 1.2, 1.5, and 2, 

respectively. Overall, an observation that is revealed by 

(Table 4) is that, in all settings, it was a very constant 

phenomenon that the estimated powers for Noether’s 

method was found to be less than the corresponding 

simulated powers with negative eN whilethe other 

methods (Lehmann, Shieh, and Doll) are consistently 

larger than the simulated power with positive errors. 

Table 2: Results of sample size from the simulation study. The simulated sample size (𝐧𝐬), the formula-based 

sample size (𝐧(.)),  and  the deviation 𝐝(.) = 𝐧(.) − 𝐧𝐬are presented. 

𝛉 
Target 

power 

Simulation 

Sample 

size 𝐧𝐬 

Formula-based Sample Sizes [𝐧(.)] and Deviation [𝐝(.) = 𝐧(.) − 𝐧𝐬] 

Lehmann Noether Wang Shieh Doll 

𝐧𝐋 𝐝𝐋 𝐧𝐍 𝐝𝐍 𝐧𝐖 𝐝𝐖 𝐧𝐒𝐡 𝐝𝐒𝐡 𝐧𝐃 𝐝𝐃 

0.2 80% 414 412 -2 414 0 404 -10 417 3 411 -3 

0.2 85% 472 471 -1 474 2 466 -6 474 2 471 -1 

0.2 90% 554 551 -3 554 0 538 -16 553 -1 551 -3 

0.2 95% 686 681 -5 685 -1 699 13 681 -5 681 -5 

0.5 80% 68 67 -1 69 1 66 -2 68 0 66 -2 

0.5 85% 77 76 -1 79 2 76 -1 76 -1 76 -1 

0.5 90% 90 89 -1 92 2 87 -3 89 -1 89 -1 

0.5 95% 111 110 -1 114 3 109 -2 110 -1 109 -2 

0.8 80% 28 27 -1 29 1 27 -1 28 0 26 -2 

0.8 85% 31 30 -1 33 2 31 0 31 0 30 -1 

0.8 90% 36 35 -1 39 3 35 -1 35 -1 35 -1 

0.8 95% 45 44 -1 48 3 42 -3 44 -1 43 -2 

1 80% 18 17 -1 20 2 18 0 18 0 17 -1 

1 85% 21 20 -1 23 2 19 -2 20 -1 19 -2 

1 90% 24 23 -1 26 2 23 -1 23 -1 23 -1 

1 95% 29 28 -1 32 3 27 -2 28 -1 28 -1 

1.2 80% 14 12 -2 15 1 13 -1 13 -1 12 -2 

1.2 85% 15 14 -1 17 2 14 -1 15 0 14 -1 

1.2 90% 17 16 -1 20 3 16 -1 17 0 16 -1 

1.2 95% 21 20 -1 24 3 19 -2 19 -2 19 -2 

1.5 80% 10 8 -2 11 1 9 -1 9 -1 8 -2 

1.5 85% 10 9 -1 12 2 10 0 10 0 9 -1 

1.5 90% 12 11 -1 14 2 11 -1 11 -1 10 -2 

1.5 95% 14 13 -1 18 4 12 -2 13 -1 13 -1 

2 80% 6 5 -1 8 2 6 0 6 0 5 -1 

2 85% 7 6 -1 9 2 6 -1 6 -1 5 -2 

2 90% 8 6 -2 10 2 6 -2 7 -1 6 -2 

2 95% 9 8 -1 13 4 7 -2 8 -1 7 -2 

Table 3: Method rankings: the sum-squared deviations (SSDs) corresponding to each method by the four target 

powers are shown in parentheses across all the 𝛉s. 

Method 
 Target powers  

80% 85% 90% 95% 

Lehmann 3 (16) 1.5 (7) 2 (18) 1 (31) 

Noether 2 (12) 4 (28) 4 (34) 4 (69) 

Wang 5 (107) 5 (43) 5 (273) 5 (198) 

Shieh 1 (11) 1.5 (7) 1 (6) 2 (34) 

Doll 4 (27) 3 (13) 3 (21) 3 (43) 
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Table 4: Results of powers estimation from the simulation study. The simulated power (𝐩𝐰𝐫𝐬), the formula-based 

power (𝐩𝐰𝐫(.)), and the percent error (𝐞(.)) are presented. 

𝛉 
Target 

Power 

Simulated 
Formula-based powers (𝐩𝐰𝐫(.)) and error (%)  

Lehmann Noether Wang Shieh Doll 

𝐧𝐬 𝐩𝐰𝐫𝐒 𝐩𝐰𝐫𝐋 𝐞𝐋 𝐩𝐰𝐫𝐍 𝐞𝐍 𝐩𝐰𝐫𝐖 𝐞𝐖 𝐩𝐰𝐫𝐒𝐡 𝐞𝐒𝐡 𝐩𝐰𝐫𝐃 𝐞𝐃 

0.2 0.8 414 0.8018 0.8024 0.079 0.8003 -0.187 0.7946 -0.89 0.8036 0.225 0.8029 0.139 

0.2 0.85 472 0.8509 0.851 0.012 0.8491 -0.218 0.8528 0.215 0.8511 0.02 0.8514 0.056 

0.2 0.9 554 0.9014 0.9017 0.039 0.9001 -0.142 0.8964 -0.55 0.9024 0.113 0.902 0.068 

0.2 0.95 686 0.9511 0.9514 0.032 0.9503 -0.083 0.9513 0.019 0.9545 0.365 0.9515 0.046 

0.5 0.8 68 0.8067 0.8102 0.435 0.797 -1.207 0.8058 -0.11 0.8028 -0.476 0.813 0.785 

0.5 0.85 77 0.8521 0.8559 0.437 0.8437 -0.992 0.8507 -0.17 0.8589 0.792 0.8581 0.698 

0.5 0.9 90 0.9023 0.9047 0.261 0.8945 -0.869 0.9052 0.321 0.9082 0.651 0.9062 0.432 

0.5 0.95 111 0.9516 0.9527 0.113 0.9458 -0.612 0.961 0.983 0.9582 0.685 0.9535 0.198 

0.8 0.8 28 0.817 0.8262 1.128 0.7928 -2.958 0.8233 0.769 0.8123 -0.582 0.8328 1.929 

0.8 0.85 31 0.8556 0.8629 0.854 0.8318 -2.778 0.8595 0.457 0.8604 0.567 0.8682 1.476 

0.8 0.9 36 0.9029 0.9089 0.669 0.8826 -2.243 0.9115 0.961 0.9126 1.084 0.9126 1.078 

0.8 0.95 45 0.9555 0.958 0.265 0.9406 -1.557 0.9613 0.615 0.9637 0.858 0.9598 0.454 

1 0.8 18 0.803 0.8243 2.653 0.7718 -3.887 0.8183 1.914 0.8124 1.179 0.8344 3.915 

1 0.85 21 0.8674 0.8789 1.325 0.8318 -4.104 0.8705 0.357 0.8662 -0.141 0.8862 2.167 

1 0.9 24 0.9083 0.9178 1.05 0.8776 -3.377 0.9187 1.146 0.9151 0.752 0.923 1.617 

1 0.95 29 0.9538 0.9581 0.453 0.9296 -2.537 0.9659 1.271 0.9588 0.526 0.9609 0.742 

1.2 0.8 14 0.8446 0.8618 2.038 0.7902 -6.439 0.8601 1.827 0.8466 0.232 0.8734 3.407 

1.2 0.85 15 0.8606 0.8848 2.808 0.8171 -5.056 0.8892 3.32 0.8823 2.52 0.8946 3.952 

1.2 0.9 17 0.9084 0.9207 1.356 0.862 -5.104 0.9278 2.141 0.9142 0.643 0.9277 2.129 

1.2 0.95 21 0.958 0.9637 0.6 0.9235 -3.594 0.9729 1.563 0.9684 1.085 0.9671 0.956 

1.5 0.8 10 0.853 0.8923 4.603 0.7865 -7.796 0.892 4.571 0.8624 1.099 0.9062 6.237 

1.5 0.85 10 0.853 0.8923 4.603 0.7865 -7.796 0.8792 3.069 0.8686 1.833 0.9062 6.237 

1.5 0.9 12 0.919 0.9404 2.326 0.8548 -6.987 0.9551 3.928 0.9478 3.137 0.9485 3.211 

1.5 0.95 14 0.9605 0.9679 0.771 0.903 -5.984 0.9764 1.654 0.9735 1.359 0.9725 1.246 

2 0.8 6 0.8285 0.9019 8.858 0.715 -13.69 0.8891 7.313 0.8194 -1.099 0.923 11.401 

2 0.85 7 0.8862 0.9421 6.302 0.7796 -12.03 0.9551 7.776 0.9146 3.2 0.9551 7.772 

2 0.9 8 0.9491 0.9665 1.84 0.8313 -12.41 0.9873 4.032 0.9604 1.189 0.9743 2.663 

2 0.95 9 0.962 0.981 1.981 0.8721 -9.344 0.9941 3.338 0.9892 2.829 0.9856 2.456 

 

 

Figure 4: Power of four numbers of simulations with 

95% CIs using bootstrap method. 

 

Figure 5: Box plot of the sample size deviations from 

the simulation for the five methods. 
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DISCUSSION 

The sample size calculation is a fundamental aspect in 

clinical research to detect a clinically relevant effect size. 

It reflects several things to be considered when 

calculating the required sample size, including the 

minimal clinically relevant effect size (𝜃), hypothesis 

testing framework, data distribution, variance of the 

outcome, the significance level (α) and target power (1-β) 

of the 1-sided or 2-sided test. 

In this paper, the five nonparametric methods commonly 

used in the sample size determination for the asymptotic 

Mann-Whitney U test are evaluated and investigated for 

their performance through the simulation study. There are 

strengths of our research in comparing the five methods. 

That is, the application of a large number of simulations 

(1 million) and the comprehensive considerations of 28 

settings. Consequently, we will be able to conclude with 

sufficient confidence for the choice of those methods 

when calculating sample size and power for the WMW 

test on continuous data in most applications. However, 

the simulation in this paper is not without limitations. We 

focused only on continuous data with a normal location 

shift. As described in the section “introduction”, the 

WMW test can be used to analyze continuous data that 

are not normally distribution. For example, Shieh and 

Wang derived explicit formulas for the sample size and 

power for non-normal distributions (i.e., uniform, 

exponential, and double exponential). The formulas for 

both Lehmann’s and Noether’s methods avoid the 

evaluation of p2 and p3. Lehmann proposed the density 

of F distribution be evaluated at zero, f ∗(0), which the 

quantity of f ∗(0) are specified as f ∗(0)  =  1, 1/4, and 1/
2 for uniform (−1/2, 1/2), double exponential (0, 1) and 

exponential (1) distribution, respectively. 

Doll’s method for sample size is suitable for various 

distributions of continuous data and similar to the method 

proposed by Mollan for computing power of the exact 

WMW test.16 Nevertheless, Doll’s method resolved the 

computation burden of Van de Wiel’s method which is 

generally very time consuming and only works for 

sample sizes up to 40 (i.e., 20 in each of the two groups). 

Further, for simplicity, in the evaluation of the five 

methods for the asymptotic WMW test, the formulas 

(Table 1) for equal sample size in comparing two groups 

is considered. In fact, the formulas for unequal sample 

size of two groups are also provided in the table. Note 

that Shieh’s method gives different power estimates when 

the values of m and n are interchanges (e.g., m=12, n=6 

versus m=6, n=12) for a fixed effect size and 𝑝2 and 𝑝3 

are unequal for non-symmetric distributions.17 

Furthermore, there may be cases that a 1-sided test is 

more appropriate than a 2-sided test. In such cases, zα/2 

in the 2-sided test formulas can simply be replaced by zα. 

In addition, the value of significance level (α) (i.e., the 

type I error rate, probability of reject H0 when H0 is true) 

is not restricted but needs to be specified in advance.  

In practical applications, α is often set to 5% or 1%, 

however, the formulas are still valid for any other value 

of α. Finally, we will provide the implementation of these 

methods in popular sample size calculation software 

packages. Shieh method is very popular and more precise 

in calculating sample size or power for the WMW test, 

but the computation is slightly more involved because the 

exact variance of W statistic is used. Fortunately, the 

method has been implemented in the wmwpow R 

package. The function shiehpwr can be used to compute 

the power for uniform, normal, exponential, or double 

exponential data. Moreover, due to the simplicity and 

good performance, both Lehmann’s and Noether’s 

methods has been implemented in commercial software 

nQuery Advisor 6.0 and East 5. In practice, in addition to 

the five methods of the sample size calculation for the 

asymptotic WMW test, other methods can also be 

applied, for example, Al-Sunduqchi method 

(implemented in NCSS-PASS software) using the 

familiar standard two-sample t test sample size formula 

with simple adjustment factors of 1, 2/3, and π/3 for 

uniform, double exponential, and normal data, 

respectively.15 However, as always, there are still debates 

on which is the most appropriate method of sample size 

calculation to detect the reasonable effect size in clinical 

research. 

CONCLUSION 

Five potential sample size calculation methods for Mann-

Whitney U test are evaluated based on high precision 

simulation results. Among the five methods, Shieh's 

method has the best performance. Lehmann's method is 

very stable and has second best performance. Doll's 

method can be used for any linear rank tests which Mann-

Whitney U test is a special case. It has good performance 

too. Noether's method consistently and slightly 

overestimates the required sample size. If no financial 

constraints, Neother's method can be regarded as a 

method with an extra margin of safety. In other words, it 

is a conservative method. Wang's method does not 

perform well compared to the other four methods. 
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