Tele-cognitive training on patients with stroke: a protocol of a feasibility randomized controlled study
DOI:
https://doi.org/10.18203/2349-3259.ijct20260048Keywords:
Post-stroke cognitive impairment, Cognitive rehabilitation, Stroke rehabilitation, Remote cognitive training, Teleneuropsychology, FeasibilityAbstract
Background: Traditional in-person cognitive rehabilitation is often inaccessible to patients due to physical limitations, travel constraints, and financial barriers. On the other hand, home-based cognitive training programs frequently lack therapist supervision. This study protocol aims to explore the feasibility of therapist-led tele-cognitive training (TCR) delivered through videoconferencing for patients with post stroke cognitive impairment (PSCI).
Methods: In this randomised feasibility study, 58 patients will be randomly assigned to intervention or treatment-as-usual (TAU) groups. The intervention group will receive 18 comprehensive tele-cognitive training sessions (4-5 per week). Cognitive assessments will include the digit span, Corsi-block tapping, controlled oral word association, animal naming, Stroop, auditory verbal learning, and design construction tests. Secondary outcomes will include the modified Barthel index, stroke-specific quality of life questionnaire, hospital anxiety and depression scale, NIMHANS cognitive screening scale, perceived deficit questionnaire, neuropsychiatric inventory questionnaire (NPI-Q), and visual analogue scale (VAS). Assessments will be conducted at baseline (T0) and post-intervention (T1). A feasibility questionnaire will be completed post-training by the intervention group and the researcher, and a three-month follow-up (T2) with rating scales will assess longer-term outcomes.
Conclusions: This study protocol aims to enhance remote access to cognitive retraining, particularly in low- to middle-income countries.
Trial registration: Trials registry of India, no. CTRI/2023/02/049481.
Metrics
References
Feigin VL, Brainin M, Norrving B, Sheila M, Ralph LS, Werner H, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(1):18-29. DOI: https://doi.org/10.1177/17474930211065917
Veldsman M, Cheng HJ, Ji F, Emilio W, Mohamed SK, Kwun KN, et al. Degeneration of structural brain networks is associated with cognitive decline after ischaemic stroke. Brain Commun. 2020;2(2):fcaa155. DOI: https://doi.org/10.21203/rs.3.rs-36274/v1
Cumming TB, Marshall RS, Lazar RM. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int J Stroke. 2013;8(1):38-45. DOI: https://doi.org/10.1111/j.1747-4949.2012.00972.x
Román GC, Sachdev P, Royall DR, Roger AB, Jean-Marc O, Secundino LP, et al. Vascular cognitive disorder: a new diagnostic category updating vascular cognitive impairment and vascular dementia. J Neurol Sci. 2004;226(1-2):81-7. DOI: https://doi.org/10.1016/j.jns.2004.09.016
Siegel JS, Ramsey LE, Snyder AZ, Nicholas VM, Ravi VC, Kilian W, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U S A. 2016;113(30):E4367-76. DOI: https://doi.org/10.1073/pnas.1521083113
Cicerone KD, Dahlberg C, Kalmar K, Langenbahn DM, Malec JF, Bergquist TF, et al. Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Arch Physical Med Rehabilit. 2000;81(12):1596-615. DOI: https://doi.org/10.1053/apmr.2000.19240
Otero-Ortega L, Gutiérrez-Fernández M, Díez-Tejedor E. Recovery After Stroke: New Insight to Promote Brain Plasticity. Front Neurol. 2021;12:768958. DOI: https://doi.org/10.3389/fneur.2021.768958
Cheng LZ, Tao J, Lin GY, Zhi YD, Zhen CA, Dian CL. Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study. J Int Med Res. 2014;42(3):659-68. DOI: https://doi.org/10.1177/0300060513505809
Pusil S, Torres-Simon L, Chino B, María EL, Leonides C, Álvaro B, et al. Resting-State Beta-Band Recovery Network Related to Cognitive Improvement After Stroke. Front Neurol. 2022;13:838170. DOI: https://doi.org/10.3389/fneur.2022.838170
Soni AK, Kumar M, Kothari S. Efficacy of home based computerized adaptive cognitive training in patients with post stroke cognitive impairment: a randomized controlled trial. Sci Rep. 2025;15(1):1072. DOI: https://doi.org/10.1038/s41598-025-85511-3
Wentink MM, Berger MAM, Kloet AJ de, Meesters J, Band GPH, Wolterbeek R, et al. The effects of an 8-week computer-based brain training programme on cognitive functioning, QoL and self-efficacy after stroke. Neuropsychol Rehabil. 2016;26(5-6):847-65. DOI: https://doi.org/10.1080/09602011.2016.1162175
Jung H, Jeong JG, Cheong YS. The Effectiveness of Computer-Assisted Cognitive Rehabilitation and the Degree of Recovery in Patients with Traumatic Brain Injury and Stroke. J Clin Med. 2021;10(24):5728. 14. DOI: https://doi.org/10.3390/jcm10245728
Maggio MG, Latella D, Maresca G. Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. J Neurosci Nursing. 2019;51(2):101. DOI: https://doi.org/10.1097/JNN.0000000000000423
Guidance on applying for feasibility studies | NIHR. Available at: https://www.nihr.ac.uk/guidance-applying-feasibility-studies. Accessed on 17 June 2025.
Billingham SA, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol. 2013;13(1):104. DOI: https://doi.org/10.1186/1471-2288-13-104
Thirthalli J, Mehta UM, Keshav Kumar JK, Vidhi T, Poornima S, Arpitha D, et al. Randomized, sham-controlled trial of transcranial magnetic stimulation augmentation of cognitive remediation in schizophrenia. Schizophr Res. 2022;241:63-5.
Goodale M, Westwood DA, David Milner A. Two distinct modes of control for object-directed action. In: Progress in Brain Research. Vol 144. The roots of visual awareness: a festschrift in honour of Alan Cowey. Elsevier. 2004;131-44. DOI: https://doi.org/10.1016/S0079-6123(03)14409-3
Bhattacharya D, Sinha N. Towards understanding the nature of direct functional connectivity in visual brain network. arXiv. 2024. DOI: https://doi.org/10.21203/rs.3.rs-4826072/v1
Walter E, Dassonville P. Activation in a Frontoparietal Cortical Network Underlies Individual Differences in the Performance of an Embedded Figures Task. PLOS ONE. 2011;6(7):e20742. DOI: https://doi.org/10.1371/journal.pone.0020742
Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97-113. DOI: https://doi.org/10.1016/0028-3932(71)90067-4
NIH Stroke Scale. Available at: https://www.ninds.nih.gov/sites/default/files/documents/NIH_Stroke_Scale_508C_0.pdf?utm_source=chatgpt.com. Accessed on 02 July 2025.
Benton AL, Hamsher DSK, Sivan AB. Controlled Oral Word Association Test. 2017.
Tulsky DS, Chiaravalloti ND, Palmer BW, Chelune GJ. Chapter 3-The Wechsler Memory Scale, Third Edition: A New Perspective. In: Tulsky DS, Saklofske DH, Heaton RK eds. Clinical Interpretation of the WAIS-III and WMS-III. Practical Resources for the Mental Health Professional. Academic Press. 2003;93-139. DOI: https://doi.org/10.1016/B978-012703570-3/50007-9
Tripathi R, Kumar JK, Bharath S, Marimuthu P, Varghese M. Clinical validity of NIMHANS neuropsychological battery for elderly: A preliminary report. Indian J Psychiat. 2013;55(3):279. DOI: https://doi.org/10.4103/0019-5545.117149
Golden C, Freshwater SM, Golden Z. Stroop Color and Word Test. 2012.
Peaker A, Stewart LE. Rey’s Auditory Verbal Learning Test-A Review. In: Crawford JR, Parker DM, eds. Developments in Clinical and Experimental Neuropsychology. Springer US. 1989;219-36. DOI: https://doi.org/10.1007/978-1-4757-9996-5_18
Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989;42(8):703-9. DOI: https://doi.org/10.1016/0895-4356(89)90065-6
Stroke Specific Quality of Life Scale.pdf. Available at: https://strokengine.ca/wp-content/uploads/2020/ 06/Stroke-Specific-Quality-of-Life-Scale.pdf. Accessed on 24 May 2024.
E SC. Validation of NIMHANS Cognitive Screening Scale (Informant Based). Dept. of Clinical Psychology; NIMHANS. 2021.
Sullivan MJ, Edgley K. A survey of multiple sclerosis, part 1: perceived cognitive problems and compensatory strategy use. Can J Rehabil. 1990;4:99-105.
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361-70. DOI: https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
Cummings J. The Neuropsychiatric Inventory: Development and Applications. J Geriatr Psychiatry Neurol. 2020;33(2):73-84. DOI: https://doi.org/10.1177/0891988719882102
Huskisson EC. Measurement of Pain. The Lancet. 1974;304(7889):1127-31. DOI: https://doi.org/10.1016/S0140-6736(74)90884-8
Orsmond GI, Cohn ES. The Distinctive Features of a Feasibility Study: Objectives and Guiding Questions. OTJR (Thorofare N J). 2015;35(3):169-77. DOI: https://doi.org/10.1177/1539449215578649
Pfledderer CD, von Klinggraeff L, Burkart S. Consolidated guidance for behavioral intervention pilot and feasibility studies. Pilot Feasibility Stud. 2024;10(1):57. DOI: https://doi.org/10.1186/s40814-024-01485-5
Signorini DF, Leung O, Simes RJ, Beller E, Gebski VJ, Callaghan T. Dynamic balanced randomization for clinical trials. Statistics Med. 1993;12(24):2343-50. DOI: https://doi.org/10.1002/sim.4780122410
Thirthalli J, Mehta UM, Keshav Kumar JK. Randomized, sham-controlled trial of transcranial magnetic stimulation augmentation of cognitive remediation in schizophrenia. Schizophr Res. 2022;241:63-5. DOI: https://doi.org/10.1016/j.schres.2022.01.028
Barnett SM, Ceci SJ. When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bull. 2002;128(4):612-37. DOI: https://doi.org/10.1037/0033-2909.128.4.612
Thommessen B, Wyller TB, Bautz-Holter E, Laake K. Acute Phase Predictors of Subsequent Psychosocial Burden in Carers of Elderly Stroke Patients. Cerebrovascular Dis. 2001;11(3):201-6. DOI: https://doi.org/10.1159/000047639