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INTRODUCTION 

Phase II clinical studies typically focus on determining 

whether a treatment has sufficient evidence of 

preliminary efficacy to warrant further investigation, such 

as in phase III trials, or whether the investigation should 

be discontinued due to a lack of efficacy or safety. These 

studies tend to be small, and data monitoring tends to 

occur as subjects are accrued so that decisions on whether 

to stop the study early-for efficacy, safety, or futility-can 

be made as soon as possible, even before the planned end 

of the study. 

While the traditional frequentist methods (e.g., Pocock 

group sequential designs, O’Brien-Fleming alpha-

spending function, etc.) provide stopping rules or 

termination guidance in phase II trials, Bayesian methods 

allow the inclusion of prior or historical information, 

which may help to improve decision making.1,2 The 

Bayesian approaches are also more amenable to adaptive 

designs and complex modelings.3 Despite these benefits, 

the Bayesian approach can be subject to inflated type I 

error rates. 

Further, the prior selection in Bayesian approach is 

crucial because it is possible to generate posterior 

distributions that are strongly influenced by the priors 

which is not desirable. In practice, the Bayesian approach 

can be contentious when prior information is based 

mainly on subject matter experts.3 To exchange this type 
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of subjectivity for assumptions more directly related to 

statistical decision making in clinician studies and trials, 

the DIP is considered, where null skepticism is elicited 

into the prior in a manner that decreases its prior effective 

sample size (ESS) as subjects accrued.4-6 In this way, the 

posterior distribution is increasingly informed by 

observed data and less by the prior information as 

subjects are accrued. 

The goal of this paper is to develop and present the DIP 

approach based on the effective sample size for single-

parameter models, include Bernoulli, Poisson, and 

Gaussian, and compare the DIP approach to the Thall and 

Simon’s Bayesian approaches.1,2 The net effect of this 

DIP formulation is that it restricts response-based 

adaptation early in a trial, gradually permitting more 

adaptation as the overall Bayesian model transfers the 

total effective sample size from the prior to the 

likelihood. If applied to designs featuring early 

termination processes, this decreasingly informative prior 

could possibly help control type I error rates, especially 

for those instances when increased type I error rates arise 

from erroneous termination early in a trial. 

This paper presents an alternative Bayesian approach to 

early termination in phase II trials using DIP in single-

parameter statistical models. Following a description of 

standard Bayesian early termination phase II trial designs 

in Section 2.1, the rationale of DIP approach and the 

general model is detailed in section 2.2. Examples of one-

sample models, including Bernoulli, Poisson, and 

Gaussian distributions, are presented in 2.3. Simulation 

studies (Section 3) are used to compare the performance 

of the DIP approach with the standard Bayesian model, 

focusing on identifying admissible designs (those with at 

least 80% power and no more than 5% type-I error rates) 

and the minimum sample size that yields such designs. 

Section 4 concludes the paper with a discussion. 

METHODS 

Standard Bayesian early termination phase II trials 

In single-group phase II studies and two-group phase II 

trials, we often need to know if an experimental treatment is 

sufficiently efficacious relative to some threshold or the 

other treatment. Suppose we have a likelihood function 

f(y|θ) and prior distribution π(θ) for outcome vector y 

and scalar parameter θ. Let θ1 be the parameter value 

representing efficacy in a new treatment, while θ2 reflects 

either some null level representing the boundary between 

an efficacious and non-efficacious treatment or the 

efficacy parameter in a comparison group. Then, the 

hypotheses we are testing are 

H0: θ1≤            θ2+δ0, H1:θ1>θ2+δ0 

where δ0 is a fixed targeted improvement for the new 

treatment to achieve (which could be 0). Note that these 

hypotheses assume that larger values of θ1 are reflective of 

greater efficacy; we could simply switch the directions of 

the inequalities if lower values imply greater efficacy. 

We also set upper and a lower boundary for the posterior 

probability, denoted as ps and pf respectively, 

representing the probabilistic thresholds needed to be met 

in order to terminate the trial for superiority or futility. 

Throughout the trial, we can decide to terminate for 

efficacy if the evidence is promising (P(θ1>θ2+δ0 |y)≥ ps or 

terminate for futility if the evidence is unpromising (P(θ1> 

θ2+δ0 |y)≤pf), and we continue the trial and enrol 

additional subjects if the evidence is inconclusive 

(pf<P(θ1>θ2+δ0 |y)<ps). These probabilities can be 

estimated and the resulting decisions can be made after 

each new subject is enrolled and observed until the new 

treatment is determined as either efficacious or futile, or 

when all the predetermined total number of subjects are 

recruited. Note that posterior probabilities could be 

calculated after cohorts of patients are accrued and 

observed, though we will not investigate that possibility 

here. 

Decreasingly informative prior 

A DIP is a skeptical prior that decreases in ESS as a trial 

progress. To that end, it incorporates both the 

predetermined total sample size and the current observed 

sample size in such a way that the unobserved sample 

size N−n is made explicitly or approximately equal to the 

prior ESS in the prior distribution. The DIP is also 

parameterized in a way that centers the prior distribution 

at some value or values that would reflect conditions of 

the null hypothesis (i.e., the new therapy is not 

efficacious). 

The basic steps for constructing a DIP are as follows: 

Determine the prior ESS for a statistical model, 

functionalize the prior in terms of the observed sample 

size n and the planned sample size N (often N−n, the 

unobserved sample size) so that the prior ESS is N at the 

beginning of the trial and 0 at the end of the trial, center 

the prior distribution at some value reflecting the null 

hypothesis, which could come from a hyperprior. 

Though several approaches are available, ESS can be 

determined using the expected local-information-ratio 

approach.7,8 For example, given binary outcomes with 

response rate p and a prior beta (a and b), we know the 

mode of the prior is a−1

a+b−2
 , as well as the prior ESS= a+b. 

If we want the mode of prior centered around p0, the 

value from the null hypothesis, then we can set prior 

ESS=a+b=N−n and a−1

a+b−2
=p0, and solve to get 

a=1+p0(N−n−2) and b=1+(1−p0)(N−n−2). We could 

slightly alter the prior parameterization of a and b as 

a=1+p0(N−n) and b=1+(1−p0)(N−n) so that the prior 

would be non-informative when the unobserved sample 

size is 0 at the end of the trial. Similarly, if we want the 

prior mean centered around a null value of p0, then we 

let prior ESS=a+b=N–n and a

a+b
=p0, and derive 

a=p0(N−n) and b=(1−p0)(N−n); we again set 

a=1+p0(N−n) and b=1+(1− p0)(N−n) to make sure we 
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have at least non-informative prior information when 

n=N in the trial. 

In clinical trials, the number of accrued subjects n is 

small at the beginning of a trial relative to the planned 

sample size N, making the prior ESS large (e.g., 2+N-n) 

and the DIP informative. Since the prior is skeptical and 

parameterized to reflect the conditions stated in the null 

hypothesis (with mean or mode set to θ0), the resulting 

posterior distribution, with a low effective sample size n 

in the likelihood function, will be restricted from 

providing evidence in the form of posterior probabilities 

that would favor termination of the trial. As the trial 

progresses, and the prior ESS is “transferred” to the 

likelihood via the increased observed sample size, the 

posterior distribution becomes increasingly more 

sensitive to the likelihood and terminating the trial-if 

evidence for concluding as such is present-becomes more 

likely. 

Examples 

Bernoulli data with a beta prior 

Thall and Simon evaluate the efficacy of a new treatment 

based on Bernoulli outcomes where the interested 

parameter is the response rate.1 In this case, we assume 

θ=p and we have the likelihood distribution  

f(y|θ) = f(y|p) = ∏ pyi(1 − p)1−yin
i=1 .  

In the one-sample case, we temporarily assume a non-

informative prior distribution π(θ)=π(p) ∼ beta (1,1); we 

will relax this assumption in subsequent paragraphs. Let 

θ=p denote the response rate of the new treatment and 

θ0=p0 denote the null response rate (which could be taken 

as the standard or current rate), we can derive the 

posterior distribution of p based on the conjugate nature 

of the beta-binomial pairing p|y ∼ beta (1+y, 1+n−y), 

where y =  ∑ yi
n
i=1  is the total number of successes out of 

the n observed subjects in the trial. 

Instead of assuming a non-informative prior, we could 

elicit an informative prior-as suggested by Thall and 

Simon-by setting the prior mean equal to p0+δ0/2 and 

selecting a value for concentration parameter ce.1 Thus, 

we can reparameterize the beta (a, b) prior using 

a=ce(p0+δ0/2) and b=ce[1−(p0+δ0/2)]. Thall and Simon 

discuss several possible values, including low values of ce 

(e.g., 2) representing a sparse prior distribution, and 

larger values ce (e.g., 10) representing an informative 

prior distribution localized around its mean.1 The 

posterior distribution of p for an informative prior is then 

given by p|y ∼ beta (a+y, b+n−y). 

With a binary outcome and conjugate beta prior 

distribution, an informative and skeptical DIP can be 

specified as beta (1+p0(N−n), 1+(1−p0)(N−n)), as 

discussed in Section 2.2. Combining the DIP with the 

binomial likelihood function, the posterior distribution of 

p is p|y ∼ beta (1+ p0(N−n)+y, 1+(1−p0)(N−n)+(n−y)). 

At the beginning of the trial, n and y are small and the 

posterior distribution of p is more centered at the prior 

mode p0. As n and y become larger, the accrued data 

become increasingly more important while the prior 

information is decreasing in importance. 

Poisson data with a gamma prior 

If the outcome in a clinical trial is the number of the 

events per subject, then a Poisson distribution with 

Gamma prior is a plausible choice for likelihood. One 

choice of the standard Bayesian prior distribution is a 

Jeffreys’ non-informative Gamma prior (limiting case) 

λ∼Gamma (0.5, 0.001) and the posterior is λ|y ∼ Gamma 

(0.5+y, 0.001+n). To apply a DIP for the one-sample case 

with Poisson outcomes with mean event rate θ = λ and a 

prior Gamma (a, b), we know the null mean (λ0) of the 

prior is 𝐚

𝐛
 and the prior ESS=b.7 If we want the prior 

centered around its null mean, then set prior ESS b=N–n 

and 𝐚

𝐛
 = λ0, and get a=λ0(N−n) and b=N−n. Then, 

functionalize a and b as a=0.5+λ0(N−n) and 

b=0.001+(N−n) so that the prior would be non-

informative when the unobserved sample size is 0 at the 

end of the trial. Thus, the DIP model for the count 

outcomes is defined as follows: y|λ ∼ Poisson (λ) 

λ ∼ Gamma (0.5+λ0(N−n), 0.001+(N−n)) 

λ|y ∼ Gamma (0.5+λ0(N−n)+y, 0.001+N) 

In the DIP approach, when more subjects n is accrued in 

the trial, the skewness of the posterior distribution will 

depend more on the observed data instead of the prior 

information. 

Normal data with known variance 

For outcomes that could be modeled with a normal 

distribution with variance s2 known, we have the 

likelihood function f (y|θ) ∼ N (θ, s2) with a normal prior 

θ ∼ N (θ0, τ2). In this case, the prior ESS=s2/τ2.7 In a one-

sample clinical trial, we assume θ=µ is the new treatment 

mean and τ2=s2/n0, where n0 is the prior ESS with a null-

mean µ0. For the given likelihood y|µ ∼ N (µ, s2) and 

prior µ ∼ N (µ0, s2/n0), the posterior distribution of µ can 

be written as: 

μ|s2, y ~ N( n0
n0+n

μ0+ 
n

n0+ny̅,    
s2

 n0+n)                                                                       

The value of prior parameters n0 determines the level of 

information contained in the prior and the contribution of 

the null mean. If n0 is small and s2/n0 is large, the prior 

distribution is dispersed and less informative; when n0 is 

larger, the prior distribution will be more tightly centered 

around the null mean and become more informative. 

For the DIP model, we set a skeptical prior (centered at 

µ0) as initially informative with n0=N−n. This 
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formulation allows the information contained within the 

posterior distribution of µ to shift from the skeptical prior 

at the beginning of the trial to the likelihood function as 

subjects accrued. The DIP posterior distribution of µ is: 

μ|s2, y ~ N(N−n

N
μ0+ nNy̅,    

s2

N )                                                                           

As the posterior mean in the Bayesian model is a 

weighted average of the prior mean µ0 and the sample 

mean 𝐲̅, this DIP formulation will cause the posterior 

mean to approximate the prior mean µ0 early in a trial, 

and will increasingly approximate 𝐲̅ as subjects accrued. 

Simulation templates 

The goals of our simulation studies are to identify the 

smallest possible sample size N among admissible 

designs and to compare the DIP approach with other 

Bayesian approaches. We define an admissible design as 

having at least 80% power and no greater than 5% type I 

error rate. If there are no admissible designs based on 

power, we default to selecting the combination of 

parameters that yield the highest power and best-

controlled type I error. If there are no admissible designs 

based on type I error, we default to selecting the 

combination of parameters that yield the lowest type I 

error and at least 80% power. We will explore Bernoulli-, 

Poisson- and normal-distributed outcomes. 

In these simulations, the observed outcome yi for each 

subject in each trial is randomly simulated from the 

probability density or mass function f (yi|θ), where θ is 

based off the population-level values assumed for that 

trial. Each subsequent subject is recruited until the trial is 

stopped (for futility or efficacy) or the planned sample 

size N is reached. In all one-sample cases, the upper 

(efficacy) and lower (futility) decision boundaries are set 

to ps ∈ (0.80, 0.99) and pf ∈ (0.01, 0.10) respectively, and 

the total sample size N∈(10, 100). For simplicity, we 

assume the target threshold δ0 equals 0. We simulate the 

observed data and estimate the power and type I error for 

each combination of ps, pf and the planned total sample 

size N. We then select the smallest total sample size 

under the admissible power and type I error. Type I error 

is measured as the proportion of trials where the null 

hypothesis is rejected under the null hypothesis (e.g., 

θ1=θ0 for one-sample case), while power is measured as 

the proportion of trials where the null hypothesis is 

rejected under the alternative hypothesis (e.g., θ1>θ0). 

Each parameter setting is repeated in 1000 simulated 

trials. All simulations are coded using R 1.4.1717.9 The 

random samples are generated with the same seed. 

For the Bernoulli outcome when θ=p, we assume the 

treatment group with higher response rate is more 

efficacious, and consider several models: a non-

informative prior beta (1,1), informative prior beta (a, b) 

with several choices of prior information a+b=2, 6 or 10, 

and a DIP skeptical prior, as illustrated in section 2.3.1. 

In the one-sample case, we consider null response rates of 

p0=0.1, 0.3, 0.5, or 0.7, with the actual response rate for 

the new treatment response rate p1 set at p1=p0+δ, where 

we range δ ∈ (0, 0.05, 0.10, 0.15, 0.2), while the target 

improvement is set at δ0=0 for simplicity. The outcome 

for each subject is randomly generated from Bernoulli 

(p1). 

For the Poisson outcomes where θ=λ, we assume the 

lower values of event rates imply improved efficacy, and 

consider a Jeffrey’s non-informative prior (limiting case) 

gamma (0.5, 0.001) and a decreasingly informative prior 

(DIP) stated in section 2.3.2. We set the null event rate as 

λ0=0.5 or 5, and define the new treatment event rate as 

λ1=λ0-δ. When λ0=0.5, we set δ ∈ (0, 0.05, 0.10, 0.15, 

0.2); when λ0=5, we set δ ∈ (0, 0.5, 1, 1.5, 2). Each 

subject is randomly generated from Poisson (λ1). 

For the normal cases where θ=µ with known variance, we 

consider Bayesian models with n0=2, 6, or 10 for 

Equation 2, as well as a DIP case. We study low-variance 

and high-variance cases reflecting our assumptions about 

the known variability. For each template, we set the null 

mean as µ0=100 and expect lower values to imply 

improved efficacy; thus, the new treatment mean is 

defined as µ1=µ0-δ, where we set δ=0, 5, or 10 and set 

δ0=0 for simplicity; we consider the low variability with 

s=15 and the high variability with s=30. Each subject is 

randomly generated from N (µ1, s2). 

RESULTS 

Table 1 shows the simulation results for one-sample 

Bernoulli cases with a low response rate (p0=0.1). 

Compared with different standard Bayesian approaches, 

the DIP approach always has better-controlled type I 

error, with a comparative or lower sample size. For some 

cases in which the standard Bayesian approach cannot 

achieve the admissible design on type I error, such as the 

case p1=0.2, the DIP approach not only controlled type I 

error, but also has the smallest planned sample size. 

Results are similar for other cases (p0=0.3, 0.5 and 0.7) 

(see Tables S.1, S.2, and S.3 in the supplementary 

material). 

The simulation results for the one-sample Poisson cases 

are shown in Table 2. Compared to the non-informative 

Bayesian approach, the DIP approach performs better in 

controlling type I error. Additionally, when the effect size 

is large, the DIP approach has a lower sample size and 

better-controlled type I error rate. 

Table 3 show the simulation results for one-sample 

normal cases. In both low and high variability settings, 

compared with different standard Bayesian approaches, 

the DIP approach has lower or comparative sample size 

when type I error is controlled (0.05). When the 

admissible type I error rate cannot be achieved, the DIP 

approach has a better-controlled type I error and 

comparable sample size.  
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Table 1: Simulation results for Bernoulli cases-one sample (p0=0.1). 

Models p0 p1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.1 0.15 94 0.01 0.89 0.808 0.239 

Bayesian (Beta (1, 1)) 0.1 0.15 96 0.02 0.94 0.802 0.294 

Bayesian (a+b=2) 0.1 0.15 92 0.01 0.85 0.804 0.342 

Bayesian (a+b=6) 0.1 0.15 100 0.01 0.87 0.810 0.295 

Bayesian (a+b=10) 0.1 0.15 98 0.03 0.85 0.805 0.301 

DIP 0.1 0.20 76 0.10 0.98 0.802 0.050 

Bayesian (Beta (1, 1)) 0.1 0.20 88 0.02 0.99 0.868 0.076 

Bayesian (a+b=2) 0.1 0.20 85 0.01 0.99 0.816 0.050 

Bayesian (a+b=6) 0.1 0.20 90 0.01 0.99 0.800 0.051 

Bayesian (a+b=10) 0.1 0.20 86 0.07 0.98 0.820 0.050 

DIP 0.1 0.25 42 0.06 0.98 0.843 0.050 

Bayesian (Beta (1, 1)) 0.1 0.25 38 0.03 0.99 0.811 0.056 

Bayesian (a+b=2) 0.1 0.25 52 0.09 0.99 0.816 0.050 

Bayesian (a+b=6) 0.1 0.25 43 0.01 0.97 0.816 0.050 

Bayesian (a+b=10) 0.1 0.25 38 0.04 0.96 0.808 0.050 

DIP 0.1 0.30 22 0.02 0.98 0.801 0.050 

Bayesian (Beta (1, 1)) 0.1 0.30 24 0.08 0.99 0.818 0.052 

Bayesian (a+b=2) 0.1 0.30 25 0.08 0.97 0.821 0.050 

Bayesian (a+b=6) 0.1 0.30 25 0.03 0.96 0.826 0.050 

Bayesian (a+b=10) 0.1 0.30 25 0.08 0.95 0.810 0.050 
aThe planned sample size, bType I error is calculated under the null hypothesis p1=p0. 

Table 2: Simulation results for Poisson cases. 

Models λ0 λ1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.5 0.45 100 0.10 0.80 0.695 0.424 

Bayesian 0.5 0.45 98 0.02 0.80 0.793 0.587 

DIP 0.5 0.4 99 0.03 0.87 0.804 0.253 

Bayesian 0.5 0.4 80 0.05 0.90 0.807 0.355 

DIP 0.5 0.35 98 0.02 0.96 0.803 0.075 

Bayesian 0.5 0.35 97 0.06 0.97 0.831 0.138 

DIP 0.5 0.3 68 0.07 0.98 0.806 0.050 

Bayesian 0.5 0.3 86 0.06 0.99 0.845 0.058 

DIP 5 4.5 98 0.03 0.96 0.802 0.071 

Bayesian 5 4.5 99 0.09 0.97 0.802 0.147 

DIP 5 4 29 0.03 0.97 0.808 0.050 

Bayesian 5 4 37 0.02 0.99 0.802 0.050 

DIP 5 3.5 12 0.09 0.96 0.819 0.050 

Bayesian 5 3.5 14 0.03 0.97 0.832 0.050 

DIP 5 3 10 0.03 0.95 0.945 0.050 

Bayesian 5 3 10 0.04 0.96 0.931 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis λ1=λ0. 

Table 3: Simulation results for normal cases with known variance. 

Models µ0 µ1 s Sample sizea Futility Efficacy Power Type I errorb 

DIP 100 95 15 61 0.07 0.98 0.802 0.050 

Bayesian (κ0=2) 100 95 15 71 0.03 0.99 0.814 0.050 

Bayesian (κ0=6) 100 95 15 74 0.07 0.99 0.805 0.050 

Bayesian (κ0=10) 100 95 15 67 0.02 0.98 0.808 0.050 

DIP 100 90 15 19 0.06 0.97 0.869 0.050 

Bayesian (κ0=2) 100 90 15 17 0.04 0.97 0.926 0.050 

Bayesian (κ0=6) 100 90 15 16 0.06 0.95 0.816 0.050 

Bayesian (κ0=10) 100 90 15 17 0.07 0.95 0.821 0.050 

Continued. 
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Models µ0 µ1 s Sample sizea Futility Efficacy Power Type I errorb 

DIP 100 95 30 100 0.09 0.88 0.805 0.204 

Bayesian (κ0=2) 100 95 30 98 0.08 0.92 0.802 0.272 

Bayesian (κ0=6) 100 95 30 94 0.01 0.92 0.80 0.249 

Bayesian (κ0=10) 100 95 30 98 0.05 0.91 0.803 0.246 

DIP 100 90 30 60 0.05 0.97 0.811 0.050 

Bayesian (κ0=2) 100 90 30 73 0.10 0.99 0.819 0.050 

Bayesian (κ0=6) 100 90 30 73 0.01 0.99 0.805 0.050 

Bayesian (κ0=10) 100 90 30 67 0.10 0.98 0.809 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis µ1=µ0. 

 

DISCUSSION 

In summary, we introduced the rationale of the DIP 

approach, applied the DIP to three formulations of early 

termination phase II trial designs (Poisson, Bernoulli, and 

Normal), and compared the performance to the Bayesian 

approaches by Thall and Simon using simulation 

studies.1,2 The results show that, for the three 

distributions and across all one-sample settings, 

compared to the traditional Bayesian approaches by Thall 

and Simon, the DIP approach requires fewer patients 

when admissible designs are achieved.1,2 In the designs 

where type I error or power are not admissible, the DIP 

approach yields similar power and better-controlled type 

I error with comparable or fewer patients than Thall and 

Simon’s Bayesian approaches.1,2 We also extend the one-

sample case to two-sample cases, and the results are 

presented in the supplemental material. For two-sample 

cases, it is concluded that the DIP approach performed 

better than Thall and Simon’s Bayesian approaches for 

moderate to large response rates, but performed poorly 

with low response rates and low effect sizes.1.2 

It should be noted that the focus of this study is on 

identifying the smallest sample size to achieve an 

admissible design, defined by the commonly used 

thresholds of at least 80% power and at most 5% type-I-

error. Changing the minimum power and maximum type 

I error rate might change our findings and conclusions, 

though these values are conventional. We also ignored 

admissible designs with a larger sample size, forfeiting 

designs with possibly higher power or lower type I error. 

While our choices for the predetermined sample size (N) 

are limited within the admissible design as having at least 

80% power and no greater than 5% type I error, the 

choices for parameters settings in the simulations are 

broadly and comprehensively considered to reflect 

realistic scenarios. For each parameter set, we also 

investigated a non-informative and three informative 

models (κ0=2, 6 and 10) in comparison with the DIP 

model. 

While we elicited the DIP in the way that is not based on 

any historical or optimistic prior, the researchers can still 

explore other subjective priors at the end of the trial to 

determine the robustness of their findings. We also 

motivated the DIP approach using conjugate examples: 

Poisson-gamma, beta-binomial, and normal-normal 

models. We can easily extend this to other prior-

likelihood combinations, particularly those that lead to 

non-conjugate or intractable posterior distributions using 

MCMC approaches. The key of the DIP approach with a 

non-conjugate prior is to parameterize the prior so that its 

effective sample size equals N-n, which may require 

numerical or simulation-based determination.7,8 In future 

work, we plan to extend the single parameter DIP model 

to cases with two or more parameters. 
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ANNEXURE 

Table S.1: Simulation results for Bernoulli cases-one sample (p0=0.3). 

Model p0 p1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.3 0.35 98 0.09 0.80 0.792 0.410 

Bayesian (Beta (1, 1)) 0.3 0.35 77 0.03 0.83 0.802 0.480 

Bayesian (a+b=2) 0.3 0.35 98 0.02 0.83 0.800 0.453 

Bayesian (a+b=6) 0.3 0.35 97 0.02 0.80 0.803 0.472 

Bayesian (a+b=10) 0.3 0.35 96 0.04 0.81 0.809 0.460 

DIP 0.3 0.40 100 0.03 0.95 0.804 0.097 

Bayesian (Beta (1, 1)) 0.3 0.40 98 0.07 0.97 0.806 0.174 

Bayesian (a+b=2) 0.3 0.40 96 0.01 0.96 0.806 0.167 

Bayesian (a+b=6) 0.3 0.40 100 0.07 0.95 0.802 0.156 

Bayesian (a+b=10) 0.3 0.40 97 0.01 0.95 0.819 0.145 

DIP 0.3 0.45 65 0.05 0.97 0.828 0.050 

Bayesian (Beta (1, 1)) 0.3 0.45 75 0.04 0.99 0.828 0.057 

Bayesian (a+b=2) 0.3 0.45 72 0.02 0.99 0.813 0.052 

Bayesian (a+b=6) 0.3 0.45 79 0.06 0.99 0.812 0.050 

Bayesian (a+b=10) 0.3 0.45 76 0.03 0.98 0.830 0.050 

DIP 0.3 0.50 36 0.07 0.97 0.808 0.050 

Bayesian (Beta (1, 1)) 0.3 0.50 44 0.05 0.99 0.819 0.050 

Bayesian (a+b=2) 0.3 0.50 47 0.02 0.99 0.812 0.050 

Bayesian (a+b=6) 0.3 0.50 48 0.07 0.99 0.806 0.050 

Bayesian (a+b=10) 0.3 0.50 40 0.05 0.97 0.805 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p0. 

Table S.2: Simulation results for Bernoulli cases-one sample (p0=0.5). 

Models p0 p1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.5 0.55 94 0.08 0.80 0.767 0.399 

Bayesian (Beta (1, 1)) 0.5 0.55 96 0.05 0.82 0.802 0.480 

Bayesian (a+b=2) 0.5 0.55 84 0.03 0.82 0.800 0.499 

Bayesian (a+b=6) 0.5 0.55 95 0.03 0.83 0.801 0.450 

Bayesian (a+b=10) 0.5 0.55 92 0.04 0.81 0.800 0.486 

DIP 0.5 0.60 98 0.06 0.93 0.806 0.124 

Bayesian (Beta (1, 1)) 0.5 0.60 97 0.02 0.96 0.816 0.189 

Bayesian (a+b=2) 0.5 0.60 98 0.03 0.96 0.809 0.196 

Bayesian (a+b=6) 0.5 0.60 97 0.07 0.95 0.803 0.178 

Bayesian (a+b=10) 0.5 0.60 90 0.01 0.94 0.800 0.169 

DIP 0.5 0.65 68 0.04 0.97 0.810 0.050 

Bayesian (Beta (1, 1)) 0.5 0.65 82 0.09 0.99 0.806 0.056 

Bayesian (a+b=2) 0.5 0.65 74 0.06 0.99 0.811 0.056 

Bayesian (a+b=6) 0.5 0.65 79 0.02 0.99 0.812 0.051 

Bayesian (a+b=10) 0.5 0.65 87 0.09 0.99 0.805 0.050 

DIP 0.5 0.70 36 0.07 0.96 0.804 0.050 

Bayesian (Beta (1, 1)) 0.5 0.70 48 0.02 0.99 0.819 0.050 

Bayesian (a+b=2) 0.5 0.70 48 0.04 0.99 0.830 0.051 

Bayesian (a+b=6) 0.5 0.70 49 0.08 0.99 0.812 0.050 

Bayesian (a+b=10) 0.5 0.70 45 0.04 0.98 0.822 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p0. 

Table S.3: Simulation results for Bernoulli cases-one sample (p0=0.7). 

Models p0 p1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.7 0.75 100 0.06 0.80 0.769 0.373 

Bayesian (Beta (1, 1)) 0.7 0.75 81 0.05 0.82 0.804 0.443 

Bayesian (a+b=2) 0.7 0.75 98 0.02 0.88 0.803 0.450 

Bayesian (a+b=6) 0.7 0.75 88 0.09 0.85 0.804 0.459 

Bayesian (a+b=10) 0.7 0.75 99 0.02 0.85 0.801 0.434 

Continued. 
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Models p0 p1 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.7 0.80 100 0.04 0.95 0.815 0.075 

Bayesian (Beta (1, 1)) 0.7 0.80 97 0.05 0.97 0.808 0.131 

Bayesian (a+b=2) 0.7 0.80 98 0.05 0.98 0.800 0.148 

Bayesian (a+b=6) 0.7 0.80 100 0.05 0.98 0.803 0.124 

Bayesian (a+b=10) 0.7 0.80 94 0.05 0.97 0.803 0.114 

DIP 0.7 0.85 50 0.07 0.96 0.816 0.050 

Bayesian (Beta (1, 1)) 0.7 0.85 70 0.01 0.99 0.850 0.050 

Bayesian (a+b=2) 0.7 0.85 62 0.09 0.99 0.859 0.073 

Bayesian (a+b=6) 0.7 0.85 63 0.02 0.99 0.834 0.050 

Bayesian (a+b=10) 0.7 0.85 66 0.01 0.99 0.816 0.050 

DIP 0.7 0.90 24 0.06 0.95 0.823 0.050 

Bayesian (Beta (1, 1)) 0.7 0.90 37 0.08 0.99 0.830 0.050 

Bayesian (a+b=2) 0.7 0.90 27 0.10 0.99 0.802 0.050 

Bayesian (a+b=6) 0.7 0.90 38 0.03 0.99 0.851 0.050 

Bayesian (a+b=10) 0.7 0.90 29 0.10 0.97 0.809 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p0. 

Table S.4: Simulation results for Bernoulli cases-two samples (p2=0.1). 

Models p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.15 0.1 200 0.04 0.80 0.724 0.406 

Bayesian (Beta (1, 1)) 0.15 0.1 184 0.10 0.81 0.806 0.441 

Bayesian (a+b=2) 0.15 0.1 194 0.01 0.84 0.804 0.429 

Bayesian (a+b=6) 0.15 0.1 187 0.05 0.80 0.810 0.437 

Bayesian (a+b=10) 0.15 0.1 192 0.04 0.80 0.807 0.422 

DIP 0.20 0.1 197 0.07 0.87 0.817 0.260 

Bayesian (Beta (1, 1)) 0.20 0.1 199 0.03 0.95 0.801 0.158 

Bayesian (a+b=2) 0.20 0.1 185 0.01 0.95 0.804 0.151 

Bayesian (a+b=6) 0.20 0.1 198 0.01 0.94 0.800 0.133 

Bayesian (a+b=10) 0.20 0.1 179 0.05 0.92 0.801 0.129 

DIP 0.25 0.1 189 0.04 0.96 0.800 0.085 

Bayesian (Beta (1, 1)) 0.25 0.1 179 0.06 0.99 0.816 0.050 

Bayesian (a+b=2) 0.25 0.1 184 0.08 0.99 0.805 0.050 

Bayesian (a+b=6) 0.25 0.1 144 0.01 0.97 0.805 0.050 

Bayesian (a+b=10) 0.25 0.1 156 0.08 0.96 0.811 0.050 

DIP 0.30 0.1 147 0.03 0.98 0.802 0.050 

Bayesian (Beta (1, 1)) 0.30 0.1 91 0.09 0.97 0.805 0.050 

Bayesian (a+b=2) 0.30 0.1 86 0.06 0.97 0.800 0.050 

Bayesian (a+b=6) 0.30 0.1 88 0.08 0.95 0.809 0.050 

Bayesian (a+b=10) 0.30 0.1 83 0.08 0.93 0.812 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p2. 

Table S.5: Simulation results for Bernoulli cases-two samples (p2=0.3). 

Models p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.35 0.3 191 0.03 0.80 0.670 0.383 

Bayesian (Beta (1, 1)) 0.35 0.3 178 0.01 0.82 0.802 0.569 

Bayesian (a+b=2) 0.35 0.3 196 0.04 0.81 0.804 0.580 

Bayesian (a+b=6) 0.35 0.3 193 0.04 0.80 0.800 0.563 

Bayesian (a+b=10) 0.35 0.3 200 0.02 0.80 0.796 0.539 

DIP 0.40 0.3 188 0.02 0.83 0.805 0.298 

Bayesian (Beta (1, 1)) 0.40 0.3 197 0.03 0.92 0.801 0.347 

Bayesian (a+b=2) 0.40 0.3 196 0.02 0.92 0.803 0.341 

Bayesian (a+b=6) 0.40 0.3 192 0.05 0.90 0.800 0.335 

Bayesian (a+b=10) 0.40 0.3 189 0.03 0.89 0.805 0.325 

Continued. 
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Models p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.45 0.3 196 0.06 0.93 0.804 0.111 

Bayesian (Beta (1, 1)) 0.45 0.3 199 0.06 0.97 0.807 0.146 

Bayesian (a+b=2) 0.45 0.3 190 0.04 0.97 0.807 0.162 

Bayesian (a+b=6) 0.45 0.3 185 0.01 0.96 0.802 0.136 

Bayesian (a+b=10) 0.45 0.3 198 0.02 0.96 0.803 0.125 

DIP 0.50 0.3 168 0.06 0.97 0.814 0.050 

Bayesian (Beta (1, 1)) 0.50 0.3 192 0.03 0.99 0.859 0.061 

Bayesian (a+b=2) 0.50 0.3 197 0.07 0.99 0.841 0.053 

Bayesian (a+b=6) 0.50 0.3 178 0.02 0.99 0.800 0.050 

Bayesian (a+b=10) 0.50 0.3 198 0.06 0.99 0.819 0.052 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p2. 

Table S.6: Simulation results for Bernoulli cases-two samples (p2=0.5). 

Models p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.55 0.5 199 0.02 0.80 0.651 0.380 

Bayesian (Beta (1, 1)) 0.55 0.5 200 0.01 0.83 0.805 0.589 

Bayesian (a+b=2) 0.55 0.5 191 0.01 0.82 0.802 0.604 

Bayesian (a+b=6) 0.55 0.5 196 0.02 0.80 0.811 0.585 

Bayesian (a+b=10) 0.55 0.5 196 0.02 0.80 0.787 0.572 

DIP 0.60 0.5 174 0.09 0.82 0.809 0.319 

Bayesian (Beta (1, 1)) 0.60 0.5 196 0.03 0.91 0.804 0.390 

Bayesian (a+b=2) 0.60 0.5 190 0.05 0.90 0.804 0.402 

Bayesian (a+b=6) 0.60 0.5 187 0.05 0.89 0.819 0.374 

Bayesian (a+b=10) 0.60 0.5 194 0.01 0.89 0.808 0.342 

DIP 0.65 0.5 190 0.05 0.92 0.807 0.115 

Bayesian (Beta (1, 1)) 0.65 0.5 193 0.01 0.97 0.809 0.182 

Bayesian (a+b=2) 0.65 0.5 193 0.02 0.97 0.800 0.181 

Bayesian (a+b=6) 0.65 0.5 195 0.02 0.96 0.802 0.148 

Bayesian (a+b=10) 0.65 0.5 197 0.02 0.96 0.803 0.139 

DIP 0.70 0.5 166 0.04 0.96 0.810 0.050 

Bayesian (Beta (1, 1)) 0.70 0.5 168 0.01 0.99 0.823 0.066 

Bayesian (a+b=2) 0.70 0.5 166 0.02 0.99 0.810 0.071 

Bayesian (a+b=6) 0.70 0.5 175 0.01 0.99 0.802 0.050 

Bayesian (a+b=10) 0.70 0.5 193 0.05 0.99 0.800 0.051 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p2. 

Table S.7: Simulation results for Bernoulli cases-two samples (p2=0.7). 

Model p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.75 0.7 193 0.10 0.80 0.674 0.388 

Bayesian (Beta (1, 1)) 0.75 0.7 199 0.03 0.82 0.805 0.573 

Bayesian (a+b=2) 0.75 0.7 192 0.02 0.83 0.811 0.584 

Bayesian (a+b=6) 0.75 0.7 188 0.02 0.80 0.801 0.566 

Bayesian (a+b=10) 0.75 0.7 197 0.01 0.80 0.795 0.557 

DIP 0.80 0.7 187 0.02 0.84 0.826 0.281 

Bayesian (Beta (1, 1)) 0.80 0.7 188 0.01 0.93 0.803 0.329 

Bayesian (a+b=2) 0.80 0.7 184 0.01 0.93 0.811 0.322 

Bayesian (a+b=6) 0.80 0.7 193 0.03 0.92 0.807 0.308 

Bayesian (a+b=10) 0.80 0.7 191 0.02 0.90 0.800 0.281 

DIP 0.85 0.7 183 0.10 0.94 0.806 0.087 

Bayesian (Beta (1, 1)) 0.85 0.7 189 0.06 0.98 0.805 0.110 

Bayesian (a+b=2) 0.85 0.7 172 0.08 0.98 0.802 0.119 

Bayesian (a+b=6) 0.85 0.7 187 0.04 0.98 0.803 0.091 

Bayesian (a+b=10) 0.85 0.7 191 0.10 0.97 0.808 0.087 
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Model p1 p2 Sample sizea Futility Efficacy Power Type I errorb 

DIP 0.90 0.7 129 0.02 0.96 0.828 0.050 

Bayesian (Beta (1, 1)) 0.90 0.7 121 0.03 0.99 0.817 0.051 

Bayesian (a+b=2) 0.90 0.7 124 0.09 0.99 0.820 0.053 

Bayesian (a+b=6) 0.90 0.7 128 0.04 0.99 0.804 0.050 

Bayesian (a+b=10) 0.90 0.7 140 0.05 0.98 0.857 0.050 
aThe planned sample size, btype I error is calculated under the null hypothesis p1=p2. 

 

 

 

 

 


