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ABSTRACT

Background: To exchange the type of subjective Bayesian prior selection for assumptions more directly related to
statistical decision making in clinician studies and trials, the decreasingly informative prior (DIP) is considered. We
expand standard Bayesian early termination methods in one-parameter statistical models for Phase 11 clinical trials to
include decreasingly informative priors (DIP). These priors are designed to reduce the chance of erroneously adapting
trials too early by parameterize skepticism in an amount always equal to the unobserved sample size.

Method: We show how to parameterize these priors based on effective prior sample size and provide examples for
common single-parameter models, include Bernoulli, Poisson, and Gaussian distributions. We use a simulation study
to search through possible values of total sample sizes and termination thresholds to find the smallest total sample size
(N) under admissible designs, which we define as having at least 80% power and no greater than 5% type | error rate.
Results: For Bernoulli, Poisson, and Gaussian distributions, the DIP approach requires fewer patients when
admissible designs are achieved. In situations where type | error or power are not admissible, the DIP approach yields
similar power and better-controlled type I error with comparable or fewer patients than other Bayesian priors by Thall
and Simon.

Conclusions: The DIP helps control type | error rates with comparable or fewer patients, especially for those
instances when increased type | error rates arise from erroneous termination early in a trial.

Keywords: Bayesian methods, Early termination, Hypothesis testing, Phase 1 clinical trial

INTRODUCTION

Phase Il clinical studies typically focus on determining
whether a treatment has sufficient evidence of
preliminary efficacy to warrant further investigation, such
as in phase Il trials, or whether the investigation should
be discontinued due to a lack of efficacy or safety. These
studies tend to be small, and data monitoring tends to
occur as subjects are accrued so that decisions on whether
to stop the study early-for efficacy, safety, or futility-can
be made as soon as possible, even before the planned end
of the study.

While the traditional frequentist methods (e.g., Pocock
group sequential designs, O’Brien-Fleming alpha-

spending function, etc.) provide stopping rules or
termination guidance in phase Il trials, Bayesian methods
allow the inclusion of prior or historical information,
which may help to improve decision making.? The
Bayesian approaches are also more amenable to adaptive
designs and complex modelings.® Despite these benefits,
the Bayesian approach can be subject to inflated type |
error rates.

Further, the prior selection in Bayesian approach is
crucial because it is possible to generate posterior
distributions that are strongly influenced by the priors
which is not desirable. In practice, the Bayesian approach
can be contentious when prior information is based
mainly on subject matter experts.> To exchange this type
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of subjectivity for assumptions more directly related to
statistical decision making in clinician studies and trials,
the DIP is considered, where null skepticism is elicited
into the prior in a manner that decreases its prior effective
sample size (ESS) as subjects accrued.*® In this way, the
posterior distribution is increasingly informed by
observed data and less by the prior information as
subjects are accrued.

The goal of this paper is to develop and present the DIP
approach based on the effective sample size for single-
parameter models, include Bernoulli, Poisson, and
Gaussian, and compare the DIP approach to the Thall and
Simon’s Bayesian approaches.>? The net effect of this
DIP formulation is that it restricts response-based
adaptation early in a trial, gradually permitting more
adaptation as the overall Bayesian model transfers the
total effective sample size from the prior to the
likelihood. If applied to designs featuring early
termination processes, this decreasingly informative prior
could possibly help control type | error rates, especially
for those instances when increased type | error rates arise
from erroneous termination early in a trial.

This paper presents an alternative Bayesian approach to
early termination in phase Il trials using DIP in single-
parameter statistical models. Following a description of
standard Bayesian early termination phase Il trial designs
in Section 2.1, the rationale of DIP approach and the
general model is detailed in section 2.2. Examples of one-
sample models, including Bernoulli, Poisson, and
Gaussian distributions, are presented in 2.3. Simulation
studies (Section 3) are used to compare the performance
of the DIP approach with the standard Bayesian model,
focusing on identifying admissible designs (those with at
least 80% power and no more than 5% type-I error rates)
and the minimum sample size that yields such designs.
Section 4 concludes the paper with a discussion.

METHODS
Standard Bayesian early termination phase 11 trials

In single-group phase Il studies and two-group phase Il
trials, we often need to know if an experimental treatment is
sufficiently efficacious relative to some threshold or the
other treatment. Suppose we have a likelihood function
f(y|8) and prior distribution 7(0) for outcome vector y
and scalar parameter 6. Let 0; be the parameter value
representing efficacy in a new treatment, while 6. reflects
either some null level representing the boundary between
an efficacious and non-efficacious treatment or the
efficacy parameter in a comparison group. Then, the
hypotheses we are testing are

Ho: 01< 02+d0, H1:01>02+060
where 8o is a fixed targeted improvement for the new

treatment to achieve (which could be 0). Note that these
hypotheses assume that larger values of 0 are reflective of

greater efficacy; we could simply switch the directions of
the inequalities if lower values imply greater efficacy.
We also set upper and a lower boundary for the posterior
probability, denoted as ps and pr respectively,
representing the probabilistic thresholds needed to be met
in order to terminate the trial for superiority or futility.
Throughout the ftrial, we can decide to terminate for
efficacy if the evidence is promising (P(6:>02+30ly)>ps or
terminate for futility if the evidence is unpromising (P(61>
02+30ly)<pr), and we continue the trial and enrol
additional subjects if the evidence is inconclusive
(pr<P(01>0,+380ly)<ps). These probabilities can be
estimated and the resulting decisions can be made after
each new subject is enrolled and observed until the new
treatment is determined as either efficacious or futile, or
when all the predetermined total number of subjects are
recruited. Note that posterior probabilities could be
calculated after cohorts of patients are accrued and
observed, though we will not investigate that possibility
here.

Decreasingly informative prior

A DIP is a skeptical prior that decreases in ESS as a trial
progress. To that end, it incorporates both the
predetermined total sample size and the current observed
sample size in such a way that the unobserved sample
size N—n is made explicitly or approximately equal to the
prior ESS in the prior distribution. The DIP is also
parameterized in a way that centers the prior distribution
at some value or values that would reflect conditions of
the null hypothesis (i.e., the new therapy is not
efficacious).

The basic steps for constructing a DIP are as follows:
Determine the prior ESS for a statistical model,
functionalize the prior in terms of the observed sample
size n and the planned sample size N (often N—n, the
unobserved sample size) so that the prior ESS is N at the
beginning of the trial and 0 at the end of the trial, center
the prior distribution at some value reflecting the null
hypothesis, which could come from a hyperprior.

Though several approaches are available, ESS can be
determined using the expected local-information-ratio
approach.”® For example, given binary outcomes with
response rate p and a prior beta (a and b), we know the
mode of the prior is 2=, as well as the prior ESS= a+b.
If we want the mode of prior centered around po, the
value from the null hypothesis, then we can set prior
ESS=a+b=N-n and - =po, and solve to get
a=1+po(N-n—2) and b=1+(1-po)(N-n—2). We could
slightly alter the prior parameterization of a and b as
a=1+po(N—n) and b=1+(1-pg)(N—n) so that the prior
would be non-informative when the unobserved sample
size is O at the end of the trial. Similarly, if we want the
prior mean centered around a null value of po, then we
let prior ESS=a+b=N-n and - =po, and derive
a=po(N-n) and b=(1-po)(N-n); we again set
a=1+po(N—n) and b=1+(1— po)(N—n) to make sure we
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have at least non-informative prior information when
n=N in the trial.

In clinical trials, the number of accrued subjects n is
small at the beginning of a trial relative to the planned
sample size N, making the prior ESS large (e.g., 2+N-n)
and the DIP informative. Since the prior is skeptical and
parameterized to reflect the conditions stated in the null
hypothesis (with mean or mode set to 6g), the resulting
posterior distribution, with a low effective sample size n
in the likelihood function, will be restricted from
providing evidence in the form of posterior probabilities
that would favor termination of the trial. As the trial
progresses, and the prior ESS is “transferred” to the
likelihood via the increased observed sample size, the
posterior distribution becomes increasingly more
sensitive to the likelihood and terminating the trial-if
evidence for concluding as such is present-becomes more
likely.

Examples
Bernoulli data with a beta prior

Thall and Simon evaluate the efficacy of a new treatment
based on Bernoulli outcomes where the interested
parameter is the response rate.! In this case, we assume
0=p and we have the likelihood distribution

f(yl8) = f(ylp) = [T, p¥i(1 — p)* V.

In the one-sample case, we temporarily assume a non-
informative prior distribution n(0)=n(p) ~ beta (1,1); we
will relax this assumption in subsequent paragraphs. Let
0=p denote the response rate of the new treatment and
Bo=po denote the null response rate (which could be taken
as the standard or current rate), we can derive the
posterior distribution of p based on the conjugate nature
of the beta-binomial pairing ply ~ beta (1+y, 1+n—y),
where y = YIL, y; is the total number of successes out of
the n observed subjects in the trial.

Instead of assuming a non-informative prior, we could
elicit an informative prior-as suggested by Thall and
Simon-by setting the prior mean equal to pot+d¢/2 and
selecting a value for concentration parameter c..! Thus,
we can reparameterize the beta (a, b) prior using
a=Ce(potd0/2) and b=ce[1—(po+do/2)]. Thall and Simon
discuss several possible values, including low values of ¢
(e.g., 2) representing a sparse prior distribution, and
larger values c. (e.g., 10) representing an informative
prior distribution localized around its mean.! The
posterior distribution of p for an informative prior is then
given by ply ~ beta (aty, b+tn—y).

With a binary outcome and conjugate beta prior
distribution, an informative and skeptical DIP can be
specified as beta (1+po(N-n), 1+(1—po)(N—n)), as
discussed in Section 2.2. Combining the DIP with the
binomial likelihood function, the posterior distribution of

pis ply ~ beta (1+ po(N-n)+y, 1+(1-po)(N-—n)+(n—y)).

At the beginning of the trial, n and y are small and the
posterior distribution of p is more centered at the prior
mode po. As n and y become larger, the accrued data
become increasingly more important while the prior
information is decreasing in importance.

Poisson data with a gamma prior

If the outcome in a clinical trial is the number of the
events per subject, then a Poisson distribution with
Gamma prior is a plausible choice for likelihood. One
choice of the standard Bayesian prior distribution is a
Jeffreys’ non-informative Gamma prior (limiting case)
A~Gamma (0.5, 0.001) and the posterior is Aly ~ Gamma
(0.5+y, 0.001+n). To apply a DIP for the one-sample case
with Poisson outcomes with mean event rate 6 = A and a
prior Gamma (a, b), we know the null mean (o) of the
prior is 2and the prior ESS=b.” If we want the prior
centered around its null mean, then set prior ESS b=N-n
and 2=Xko, and get a=Ao(N-n) and b=N-n. Then,
functionalize a and b as a=0.5+3(N-n) and
b=0.001+(N-n) so that the prior would be non-
informative when the unobserved sample size is 0 at the
end of the trial. Thus, the DIP model for the count
outcomes is defined as follows: y|]A ~ Poisson (1)

A ~ Gamma (0.5+Xo(N—n), 0.001+(N—n))
My ~ Gamma (0.5+Ao(N—n)+y, 0.001+N)

In the DIP approach, when more subjects n is accrued in
the trial, the skewness of the posterior distribution will
depend more on the observed data instead of the prior
information.

Normal data with known variance

For outcomes that could be modeled with a normal
distribution with variance s?> known, we have the
likelihood function f (y|0) ~ N (0, s?) with a normal prior
0 ~ N (09, ). In this case, the prior ESS=s%/72." In a one-
sample clinical trial, we assume 0=y is the new treatment
mean and t2=s?/ng, where n is the prior ESS with a null-
mean L. For the given likelihood y|u ~ N (4, s?) and
prior g ~ N (Mo, $?/ng), the posterior distribution of p can
be written as:

2 ~ no n__ s?
uls®y N(n0+nuo+my. m)

The value of prior parameters no determines the level of
information contained in the prior and the contribution of
the null mean. If ng is small and s?/no is large, the prior
distribution is dispersed and less informative; when nq is
larger, the prior distribution will be more tightly centered
around the null mean and become more informative.

For the DIP model, we set a skeptical prior (centered at
Mo) as initially informative with no=N-n. This
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formulation allows the information contained within the
posterior distribution of p to shift from the skeptical prior
at the beginning of the trial to the likelihood function as
subjects accrued. The DIP posterior distribution of  is:

- 2
ws?y ~ NCSPuo+ By, 50

As the posterior mean in the Bayesian model is a
weighted average of the prior mean po and the sample
mean y, this DIP formulation will cause the posterior
mean to approximate the prior mean o early in a trial,
and will increasingly approximate y as subjects accrued.

Simulation templates

The goals of our simulation studies are to identify the
smallest possible sample size N among admissible
designs and to compare the DIP approach with other
Bayesian approaches. We define an admissible design as
having at least 80% power and no greater than 5% type |
error rate. If there are no admissible designs based on
power, we default to selecting the combination of
parameters that yield the highest power and best-
controlled type | error. If there are no admissible designs
based on type | error, we default to selecting the
combination of parameters that yield the lowest type |
error and at least 80% power. We will explore Bernoulli-,
Poisson- and normal-distributed outcomes.

In these simulations, the observed outcome y; for each
subject in each trial is randomly simulated from the
probability density or mass function f (yi|8), where 0 is
based off the population-level values assumed for that
trial. Each subsequent subject is recruited until the trial is
stopped (for futility or efficacy) or the planned sample
size N is reached. In all one-sample cases, the upper
(efficacy) and lower (futility) decision boundaries are set
to ps € (0.80, 0.99) and pr € (0.01, 0.10) respectively, and
the total sample size N€(10, 100). For simplicity, we
assume the target threshold 8o equals 0. We simulate the
observed data and estimate the power and type | error for
each combination of ps, pr and the planned total sample
size N. We then select the smallest total sample size
under the admissible power and type | error. Type | error
is measured as the proportion of trials where the null
hypothesis is rejected under the null hypothesis (e.g.,
01=0o for one-sample case), while power is measured as
the proportion of trials where the null hypothesis is
rejected under the alternative hypothesis (e.g., 61>00).
Each parameter setting is repeated in 1000 simulated
trials. All simulations are coded using R 1.4.1717.° The
random samples are generated with the same seed.

For the Bernoulli outcome when 6=p, we assume the
treatment group with higher response rate is more
efficacious, and consider several models: a non-
informative prior beta (1,1), informative prior beta (a, b)
with several choices of prior information a+b=2, 6 or 10,
and a DIP skeptical prior, as illustrated in section 2.3.1.

In the one-sample case, we consider null response rates of
po=0.1, 0.3, 0.5, or 0.7, with the actual response rate for
the new treatment response rate p; set at pi=pg+9d, where
we range 6 € (0, 0.05, 0.10, 0.15, 0.2), while the target
improvement is set at 80=0 for simplicity. The outcome
for each subject is randomly generated from Bernoulli

(py)

For the Poisson outcomes where 6=A, we assume the
lower values of event rates imply improved efficacy, and
consider a Jeffrey’s non-informative prior (limiting case)
gamma (0.5, 0.001) and a decreasingly informative prior
(DIP) stated in section 2.3.2. We set the null event rate as
h0=0.5 or 5, and define the new treatment event rate as
M=Ao-6. When A¢=0.5, we set 6 € (0, 0.05, 0.10, 0.15,
0.2); when Ao=5, we set 6 € (0, 0.5, 1, 1.5, 2). Each
subject is randomly generated from Poisson (A1).

For the normal cases where 6=p with known variance, we
consider Bayesian models with n¢=2, 6, or 10 for
Equation 2, as well as a DIP case. We study low-variance
and high-variance cases reflecting our assumptions about
the known variability. For each template, we set the null
mean as Mo=100 and expect lower values to imply
improved efficacy; thus, the new treatment mean is
defined as p1=Mo.6, where we set 6=0, 5, or 10 and set
d0=0 for simplicity; we consider the low variability with
s=15 and the high variability with s=30. Each subject is
randomly generated from N (3, ).

RESULTS

Table 1 shows the simulation results for one-sample
Bernoulli cases with a low response rate (po=0.1).
Compared with different standard Bayesian approaches,
the DIP approach always has better-controlled type |
error, with a comparative or lower sample size. For some
cases in which the standard Bayesian approach cannot
achieve the admissible design on type | error, such as the
case p1=0.2, the DIP approach not only controlled type I
error, but also has the smallest planned sample size.
Results are similar for other cases (po=0.3, 0.5 and 0.7)
(see Tables S.1, S.2, and S.3 in the supplementary
material).

The simulation results for the one-sample Poisson cases
are shown in Table 2. Compared to the non-informative
Bayesian approach, the DIP approach performs better in
controlling type | error. Additionally, when the effect size
is large, the DIP approach has a lower sample size and
better-controlled type I error rate.

Table 3 show the simulation results for one-sample
normal cases. In both low and high variability settings,
compared with different standard Bayesian approaches,
the DIP approach has lower or comparative sample size
when type | error is controlled (0.05). When the
admissible type | error rate cannot be achieved, the DIP
approach has a better-controlled type 1 error and
comparable sample size.
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Table 1: Simulation results for Bernoulli cases-one sample (po=0.1).

Sample size? Futility  Efficacy Type | error®
DIP 01 015 94 0.01 0.89 0.808 0.239
Bayesian (Beta (1, 1)) 01 015 96 0.02 0.94 0.802 0.294
Bayesian (a+b=2) 01 015 92 0.01 0.85 0.804 0.342
Bayesian (a+b=6) 01 015 100 0.01 0.87 0.810 0.295
Bayesian (a+b=10) 01 015 98 0.03 0.85 0.805 0.301
DIP 01 020 76 0.10 0.98 0.802 0.050
Bayesian (Beta (1, 1)) 01 020 88 0.02 0.99 0.868 0.076
Bayesian (a+b=2) 01 020 85 0.01 0.99 0.816 0.050
Bayesian (a+b=6) 01 020 90 0.01 0.99 0.800 0.051
Bayesian (a+b=10) 01 020 86 0.07 0.98 0.820 0.050
DIP 01 025 42 0.06 0.98 0.843 0.050
Bayesian (Beta (1, 1)) 01 025 38 0.03 0.99 0.811 0.056
Bayesian (a+b=2) 01 025 52 0.09 0.99 0.816 0.050
Bayesian (a+b=6) 01 025 43 0.01 0.97 0.816 0.050
Bayesian (a+b=10) 01 025 38 0.04 0.96 0.808 0.050
DIP 01 030 22 0.02 0.98 0.801 0.050
Bayesian (Beta (1, 1)) 01 030 24 0.08 0.99 0.818 0.052
Bayesian (a+b=2) 01 030 25 0.08 0.97 0.821 0.050
Bayesian (a+b=6) 01 030 25 0.03 0.96 0.826 0.050
Bayesian (a+b=10) 01 030 25 0.08 0.95 0.810 0.050

aThe planned sample size, PType | error is calculated under the null hypothesis p1=p0.

Table 2: Simulation results for Poisson cases.

Sample size? Futility Efficacy Type | error®
DIP 05 045 100 0.10 0.80 0.695 0.424
Bayesian 05 045 98 0.02 0.80 0.793 0.587
DIP 05 04 99 0.03 0.87 0.804 0.253
Bayesian 05 04 80 0.05 0.90 0.807 0.355
DIP 05 035 98 0.02 0.96 0.803 0.075
Bayesian 05 035 97 0.06 0.97 0.831 0.138
DIP 05 03 68 0.07 0.98 0.806 0.050
Bayesian 05 03 86 0.06 0.99 0.845 0.058
DIP 5 45 98 0.03 0.96 0.802 0.071
Bayesian 5 45 99 0.09 0.97 0.802 0.147
DIP 5 4 29 0.03 0.97 0.808 0.050
Bayesian 5 4 37 0.02 0.99 0.802 0.050
DIP 5 3.5 12 0.09 0.96 0.819 0.050
Bayesian 5 35 14 0.03 0.97 0.832 0.050
DIP 5 3 10 0.03 0.95 0.945 0.050
Bayesian 5 3 10 0.04 0.96 0.931 0.050

aThe planned sample size, type I error is calculated under the null hypothesis A1=Ao.

Table 3: Simulation results for normal cases with known variance.

| Models Ho i S Samplesize®  Futility Efficacy Power Type | error®
DIP 100 9% 15 61 0.07 0.98 0.802 0.050
Bayesian (xo=2) 100 9% 15 71 0.03 0.99 0.814 0.050
Bayesian (ko=6) 100 9%5 15 74 0.07 0.99 0.805 0.050
Bayesian (xo=10) 100 9%5 15 67 0.02 0.98 0.808 0.050
DIP 100 90 15 19 0.06 0.97 0.869 0.050
Bayesian (xo=2) 100 90 15 17 0.04 0.97 0.926 0.050
Bayesian (xo=6) 100 9 15 16 0.06 0.95 0.816 0.050
Bayesian (xo=10) 100 90 15 17 0.07 0.95 0.821 0.050
Continued.
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Sample size?
DIP 100 95 30 100
Bayesian (ko0=2) 100 95 30 98
Bayesian (ko=6) 100 9% 30 9%
Bayesian (ko=10) 100 95 30 98
DIP 100 90 30 60
Bayesian (ko0=2) 100 90 30 73
Bayesian (ko=6) 100 90 30 73
Bayesian (ko=10) 100 90 30 67

Type I error®
0.09 0.88 0.805 0.204
0.08 0.92 0.802 0.272
0.01 0.92 0.80 0.249
0.05 0.91 0.803 0.246
0.05 0.97 0.811 0.050
0.10 0.99 0.819 0.050
0.01 0.99 0.805 0.050
0.10 0.98 0.809 0.050

aThe planned sample size, btype | error is calculated under the null hypothesis p1=po0.

DISCUSSION

In summary, we introduced the rationale of the DIP
approach, applied the DIP to three formulations of early
termination phase Il trial designs (Poisson, Bernoulli, and
Normal), and compared the performance to the Bayesian
approaches by Thall and Simon using simulation
studies.'?> The results show that, for the three
distributions and across all one-sample settings,
compared to the traditional Bayesian approaches by Thall
and Simon, the DIP approach requires fewer patients
when admissible designs are achieved.>? In the designs
where type | error or power are not admissible, the DIP
approach yields similar power and better-controlled type
I error with comparable or fewer patients than Thall and
Simon’s Bayesian approaches.>? We also extend the one-
sample case to two-sample cases, and the results are
presented in the supplemental material. For two-sample
cases, it is concluded that the DIP approach performed
better than Thall and Simon’s Bayesian approaches for
moderate to large response rates, but performed poorly
with low response rates and low effect sizes.'2

It should be noted that the focus of this study is on
identifying the smallest sample size to achieve an
admissible design, defined by the commonly used
thresholds of at least 80% power and at most 5% type-I-
error. Changing the minimum power and maximum type
I error rate might change our findings and conclusions,
though these values are conventional. We also ignored
admissible designs with a larger sample size, forfeiting
designs with possibly higher power or lower type | error.
While our choices for the predetermined sample size (N)
are limited within the admissible design as having at least
80% power and no greater than 5% type | error, the
choices for parameters settings in the simulations are
broadly and comprehensively considered to reflect
realistic scenarios. For each parameter set, we also
investigated a non-informative and three informative
models (ko=2, 6 and 10) in comparison with the DIP
model.

While we elicited the DIP in the way that is not based on
any historical or optimistic prior, the researchers can still
explore other subjective priors at the end of the trial to
determine the robustness of their findings. We also
motivated the DIP approach using conjugate examples:
Poisson-gamma, beta-binomial, and normal-normal

models. We can easily extend this to other prior-
likelihood combinations, particularly those that lead to
non-conjugate or intractable posterior distributions using
MCMC approaches. The key of the DIP approach with a
non-conjugate prior is to parameterize the prior so that its
effective sample size equals N-n, which may require
numerical or simulation-based determination.”® In future
work, we plan to extend the single parameter DIP model
to cases with two or more parameters.
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ANNEXURE

Table S.1: Simulation results for Bernoulli cases-one sample (po=0.3).

Model 0 1 Sample size? Futili Efficac Power  Type I error®
DIP 03 035 98 0.09 0.80 0.792 0.410
Bayesian (Beta (1, 1)) 03 03 77 0.03 0.83 0.802 0.480
Bayesian (a+b=2) 03 035 98 0.02 0.83 0.800 0.453
Bayesian (a+b=6) 03 03 97 0.02 0.80 0.803 0.472
Bayesian (a+b=10) 03 035 9 0.04 0.81 0.809 0.460
DIP 03 040 100 0.03 0.95 0.804 0.097
Bayesian (Beta (1, 1)) 03 040 98 0.07 0.97 0.806 0.174
Bayesian (a+b=2) 03 040 96 0.01 0.96 0.806 0.167
Bayesian (a+b=6) 03 040 100 0.07 0.95 0.802 0.156
Bayesian (a+b=10) 03 040 97 0.01 0.95 0.819 0.145
DIP 03 045 65 0.05 0.97 0.828 0.050
Bayesian (Beta (1, 1)) 03 045 75 0.04 0.99 0.828 0.057
Bayesian (a+b=2) 03 045 72 0.02 0.99 0.813 0.052
Bayesian (a+b=6) 03 045 79 0.06 0.99 0.812 0.050
Bayesian (a+b=10) 03 045 76 0.03 0.98 0.830 0.050
DIP 03 050 36 0.07 0.97 0.808 0.050
Bayesian (Beta (1, 1)) 03 050 44 0.05 0.99 0.819 0.050
Bayesian (a+b=2) 03 050 47 0.02 0.99 0.812 0.050
Bayesian (a+b=6) 03 050 48 0.07 0.99 0.806 0.050
Bayesian (a+b=10) 03 050 40 0.05 0.97 0.805 0.050

aThe planned sample size, type | error is calculated under the null hypothesis p1=p0.

Table S.2: Simulation results for Bernoulli cases-one sample (po=0.5).

Models 0 1 Sample size* Futili Efficac Power  Type I error®
DIP 05 055 94 0.08 0.80 0.767 0.399
Bayesian (Beta (1, 1)) 05 055 96 0.05 0.82 0.802 0.480
Bayesian (a+b=2) 05 055 84 0.03 0.82 0.800 0.499
Bayesian (a+b=6) 05 055 95 0.03 0.83 0.801 0.450
Bayesian (a+b=10) 05 055 92 0.04 0.81 0.800 0.486
DIP 05 060 98 0.06 0.93 0.806 0.124
Bayesian (Beta (1, 1)) 05 060 97 0.02 0.96 0.816 0.189
Bayesian (a+b=2) 05 060 98 0.03 0.96 0.809 0.196
Bayesian (a+b=6) 05 060 97 0.07 0.95 0.803 0.178
Bayesian (a+b=10) 05 060 90 0.01 0.94 0.800 0.169
DIP 05 065 68 0.04 0.97 0.810 0.050
Bayesian (Beta (1, 1)) 05 065 82 0.09 0.99 0.806 0.056
Bayesian (a+b=2) 05 065 74 0.06 0.99 0.811 0.056
Bayesian (a+b=6) 05 065 79 0.02 0.99 0.812 0.051
Bayesian (a+b=10) 05 065 87 0.09 0.99 0.805 0.050
DIP 05 070 36 0.07 0.96 0.804 0.050
Bayesian (Beta (1, 1)) 05 070 48 0.02 0.99 0.819 0.050
Bayesian (a+b=2) 05 070 48 0.04 0.99 0.830 0.051
Bayesian (a+b=6) 05 070 49 0.08 0.99 0.812 0.050
Bayesian (a+b=10) 05 070 45 0.04 0.98 0.822 0.050

aThe planned sample size, type | error is calculated under the null hypothesis p1=p0.

Table S.3: Simulation results for Bernoulli cases-one sample (po=0.7).

Models po p1 Sample size? Futility  Efficacy Power  Type l error®
DIP 0.7 075 100 0.06 0.80 0.769 0.373
Bayesian (Beta (1, 1)) 07 075 81 0.05 0.82 0.804 0.443
Bayesian (a+b=2) 0.7 075 98 0.02 0.88 0.803 0.450
Bayesian (a+b=6) 07 075 88 0.09 0.85 0.804 0.459
Bayesian (a+b=10) 0.7 075 99 0.02 0.85 0.801 0.434
Continued.
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Sample size? ili i Power  Type |l error®
DIP 0.7 0.80 100 0.04 0.95 0.815 0.075
Bayesian (Beta (1, 1)) 07 080 97 0.05 0.97 0808  0.131
Bayesian (a+b=2) 0.7 0.80 98 0.05 0.98 0.800 0.148
Bayesian (a+b=6) 0.7 0.80 100 0.05 0.98 0.803 0.124
Bayesian (a+b=10) 0.7 0.80 94 0.05 0.97 0.803 0.114
DIP 0.7 085 50 0.07 0.96 0.816 0.050
Bayesian (Beta (1, 1)) 07 085 70 0.01 0.99 0850  0.050
Bayesian (a+b=2) 0.7 085 62 0.09 0.99 0.859 0.073
Bayesian (a+b=6) 0.7 085 63 0.02 0.99 0.834 0.050
Bayesian (a+b=10) 0.7 085 66 0.01 0.99 0.816 0.050
DIP 0.7 090 24 0.06 0.95 0.823 0.050
Bayesian (Beta (1, 1)) 07 090 37 0.08 0.99 0830  0.050
Bayesian (a+b=2) 0.7 090 27 0.10 0.99 0.802 0.050
Bayesian (a+b=6) 0.7 0.90 38 0.03 0.99 0.851 0.050
Bayesian (a+b=10) 0.7 090 29 0.10 0.97 0.809 0.050

aThe planned sample size, Ptype | error is calculated under the null hypothesis p1=p0.

Table S.4: Simulation results for Bernoulli cases-two samples (p2=0.1).

Models p1 p2 Sample size? Futility  Efficacy Power  Type I error®
DIP 015 01 200 0.04 0.80 0.724 0.406
Bayesian (Beta (1, 1)) 015 01 184 0.10 0.81 0.806 0.441
Bayesian (a+b=2) 015 01 194 0.01 0.84 0.804 0.429
Bayesian (a+b=6) 015 01 187 0.05 0.80 0.810 0.437
Bayesian (a+b=10) 015 01 192 0.04 0.80 0.807 0.422
DIP 020 01 197 0.07 0.87 0.817 0.260
Bayesian (Beta (1, 1)) 020 01 199 0.03 0.95 0.801 0.158
Bayesian (a+b=2) 020 01 185 0.01 0.95 0.804 0.151
Bayesian (a+b=6) 020 01 198 0.01 0.94 0.800 0.133
Bayesian (a+b=10) 020 01 179 0.05 0.92 0.801 0.129
DIP 025 01 189 0.04 0.96 0.800 0.085
Bayesian (Beta (1, 1)) 025 01 179 0.06 0.99 0.816 0.050
Bayesian (a+b=2) 025 01 184 0.08 0.99 0.805 0.050
Bayesian (a+b=6) 025 01 144 0.01 0.97 0.805 0.050
Bayesian (a+b=10) 025 01 156 0.08 0.96 0.811 0.050
DIP 030 01 147 0.03 0.98 0.802 0.050
Bayesian (Beta (1, 1)) 030 01 91 0.09 0.97 0.805 0.050
Bayesian (a+b=2) 030 01 86 0.06 0.97 0.800 0.050
Bayesian (a+b=6) 030 01 88 0.08 0.95 0.809 0.050
Bayesian (a+b=10) 030 01 83 0.08 0.93 0.812 0.050

aThe planned sample size, Ptype | error is calculated under the null hypothesis p1=p2,

Table S.5: Simulation results for Bernoulli cases-two samples (p2=0.3).

Models p1 p2 Sample size? Futility Efficacy Power  Type l error®
DIP 035 03 191 0.03 0.80 0.670 0.383
Bayesian (Beta (1, 1)) 035 03 178 0.01 0.82 0.802 0.569
Bayesian (a+b=2) 035 03 19 0.04 0.81 0.804 0.580
Bayesian (a+b=6) 035 03 193 0.04 0.80 0.800 0.563
Bayesian (a+b=10) 035 03 200 0.02 0.80 0.796 0.539
DIP 040 03 188 0.02 0.83 0.805 0.298
Bayesian (Beta (1, 1)) 040 03 197 0.03 0.92 0.801 0.347
Bayesian (a+b=2) 040 03 196 0.02 0.92 0.803 0.341
Bayesian (a+b=6) 040 03 192 0.05 0.90 0.800 0.335
Bayesian (a+b=10) 040 03 189 0.03 0.89 0.805 0.325
Continued.
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Models D1 D2 Sample size? Futilit Efficac Power Type I error®
DIP 0.45 03 196 0.06 0.93 0.804 0.111
Bayesian (Beta (1, 1)) 0.45 03 199 0.06 0.97 0.807 0.146
Bayesian (a+b=2) 0.45 03 190 0.04 0.97 0.807 0.162
Bayesian (a+b=6) 0.45 03 185 0.01 0.96 0.802 0.136
Bayesian (a+b=10) 0.45 03 198 0.02 0.96 0.803 0.125
DIP 050 03 168 0.06 0.97 0.814 0.050
Bayesian (Beta (1, 1)) 0.50 03 192 0.03 0.99 0.859 0.061
Bayesian (a+b=2) 050 03 197 0.07 0.99 0.841 0.053
Bayesian (a+b=6) 0.50 03 178 0.02 0.99 0.800 0.050
Bayesian (a+b=10) 050 03 198 0.06 0.99 0.819 0.052

aThe planned sample size, btype | error is calculated under the null hypothesis p1=p2.

Table S.6: Simulation results for Bernoulli cases-two samples (p2=0.5).

Models p1 p2 Sample size? Futility Efficacy Power  Type I error®
DIP 055 05 199 0.02 0.80 0.651 0.380
Bayesian (Beta (1, 1)) 055 05 200 0.01 0.83 0.805 0.589
Bayesian (a+b=2) 055 05 191 0.01 0.82 0.802 0.604
Bayesian (a+b=6) 055 05 196 0.02 0.80 0.811 0.585
Bayesian (a+b=10) 055 05 196 0.02 0.80 0.787 0.572
DIP 060 05 174 0.09 0.82 0.809 0.319
Bayesian (Beta (1, 1)) 060 05 196 0.03 0.91 0.804 0.390
Bayesian (a+b=2) 060 05 190 0.05 0.90 0.804 0.402
Bayesian (a+b=6) 060 05 187 0.05 0.89 0.819 0.374
Bayesian (a+b=10) 060 05 194 0.01 0.89 0.808 0.342
DIP 065 05 190 0.05 0.92 0.807 0.115
Bayesian (Beta (1, 1)) 065 05 193 0.01 0.97 0.809 0.182
Bayesian (a+b=2) 065 05 193 0.02 0.97 0.800 0.181
Bayesian (a+b=6) 065 05 195 0.02 0.96 0.802 0.148
Bayesian (a+b=10) 065 05 197 0.02 0.96 0.803 0.139
DIP 070 05 166 0.04 0.96 0.810 0.050
Bayesian (Beta (1, 1)) 0.70 05 168 0.01 0.99 0.823 0.066
Bayesian (a+b=2) 070 05 166 0.02 0.99 0.810 0.071
Bayesian (a+b=6) 0.70 05 175 0.01 0.99 0.802 0.050
Bayesian (a+b=10) 070 05 193 0.05 0.99 0.800 0.051

aThe planned sample size, type | error is calculated under the null hypothesis p1=p2.

Table S.7: Simulation results for Bernoulli cases-two samples (p2=0.7).

Model p1 p2 Sample size? Futility  Efficacy Power  Type I error®
DIP 075 07 193 0.10 0.80 0.674 0.388
Bayesian (Beta (1, 1)) 075 07 199 0.03 0.82 0.805 0.573
Bayesian (a+b=2) 075 07 192 0.02 0.83 0.811 0.584
Bayesian (a+b=6) 075 0.7 188 0.02 0.80 0.801 0.566
Bayesian (a+b=10) 075 07 197 0.01 0.80 0.795 0.557
DIP 080 0.7 187 0.02 0.84 0.826 0.281
Bayesian (Beta (1, 1)) 080 0.7 188 0.01 0.93 0.803 0.329
Bayesian (a+b=2) 080 07 184 0.01 0.93 0.811 0.322
Bayesian (a+b=6) 080 07 193 0.03 0.92 0.807 0.308
Bayesian (a+b=10) 080 07 191 0.02 0.90 0.800 0.281
DIP 085 0.7 183 0.10 0.94 0.806 0.087
Bayesian (Beta (1, 1)) 085 0.7 189 0.06 0.98 0.805 0.110
Bayesian (a+b=2) 08 07 172 0.08 0.98 0.802 0.119
Bayesian (a+b=6) 08 07 187 0.04 0.98 0.803 0.091
Bayesian (a+b=10) 085 07 191 0.10 0.97 0.808 0.087
Continued.
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Model D1 D2 Sample size? Futili Efficac Power  Type I error®
DIP 090 0.7 129 0.02 0.96 0.828 0.050
Bayesian (Beta (1, 1)) 090 07 121 0.03 0.99 0.817 0.051
Bayesian (a+b=2) 090 0.7 124 0.09 0.99 0.820 0.053
Bayesian (a+b=6) 090 0.7 128 0.04 0.99 0.804 0.050
Bayesian (a+b=10) 090 0.7 140 0.05 0.98 0.857 0.050

aThe planned sample size, btype | error is calculated under the null hypothesis p1=p2.
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