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INTRODUCTION 

Clinical trial data collected from multiple imaging sites 
can often be heterogeneous, redundant, or sometimes 
unusable. To detect the underlying treatment signal in a 
patient cohort, the data must first be organized as cleanly 
and homogenously as possible before starting analysis.

1
 

For prior studies undertaken by our organization, a 
standard workflow was to initially import received image 
data into our in-house image storage and viewer system 

database. Once the data is present in the database, 
typically each imaging study time point is manually 
reviewed to identify the modality, anatomy, and other 
characteristics and select the best image series (or set of 
series) for labeling. This requires opening and reviewing 
each image series, which is a time consuming process 
given that each time point will typically include multiple 
image series including scout views, multiple 
reconstructions, and reformats. From among all of those 
series only those that need to be read are labeled. 
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Therefore, each time point has typically taken 
approximately 30 minutes to check for and remove 
protected health information (PHI), then import, review, 
and label. 

PHI cleaning can be particularly time consuming, as PHI 
can reside in both known and private DICOM tags or be 
burnt into the image data itself. For a given reading task, 
the optimal scans from those available at each time point 
based on both anatomical coverage and acquisition 
parameters must be selected and labeled for reading. 
Using a high-throughput technique for characterizing and 
labeling data is thereby warranted, especially for large 
studies where manual review of the high number of 
image series is not feasible, such as retrospective studies 

where a large bolus of imaging data may arrive at once. 

A number of scientific fields require high-throughput 
analysis of large datasets, especially in the biological 
field.

2–4
 As such, the use of computational data 

management solutions continues to be explored in a 
variety of settings to improve the efficiency and accuracy 
of data intake and analysis.

5,6
 While these methods often 

apply to datasets involving millions of data points, the 
same principles can be applied to image datasets made up 
of hundreds of thousands of image series. High-
throughput pipelines for processing biologic image data 
typically employ machine learning and data mining 
techniques for image classification and analysis.

7
 Medical 

image data typically arrives in DICOM format; it 
comprises both the image data and a header file 
containing scan parameters and other identifying image 
data. Assigning labels to organize image data can be 
posed as a classification problem that uses both the image 
and header information as input while also applying 
machine learning. 

Herein we describe the development and application of a 
novel, high-throughput pipeline for quality control (QC) 
and labeling of medical images in clinical trials. In this 
context, labeling refers to marking an image series in the 
database by its modality, anatomy, and other 
characteristics such as the presence of gadolinium 
contrast agent; the required types of labeled series are 
often defined by the study or clinical trial protocol and 
imaging charter. This pipeline can be used to screen large 
amounts of image data to identify and label only the 
optimal image series for each modality and anatomy. 
These optimal labeled scans can then be passed to 
radiologists for analysis. We hypothesized that an 
automated high-throughput pipeline could accurately 
classify imaged anatomy, assign QC scores to each series, 
tag images for labeling and analysis, and calculate an 
overall quality score for each submitted time point, with 
few labeling corrections being required by a human 

image analyst. 

METHODS 

The data present in this study consisted largely of 

computed tomography (CT) and nuclear medicine (NM) 

technetium-99m (Tc-99m) bone scan scintigraphy images 

pooled from three clinical trial datasets: one prostate 

cancer therapy trial and two lymphoma therapy trials. 

Although the NM category of imaging can encompass a 

range of techniques including position emission 

tomography (PET) and single-photon emission computed 

tomography (SPECT) imaging, “NM” will refer to Tc-

99m bone scan acquisitions throughout this study. CT 

data is typically multi-slice and can be reconstructed in 

the axial, sagittal, or coronal planes. For the purposes of 

this study, only axial CT series were considered usable, 

as this is the standard image orientation used by 

radiologists for quantitative analysis. NM data may arrive 

as whole-body bone scan images, which were the ideal 

form of NM data for this study; screen captures, which 

are a secondary form of NM data that may combine 

multiple whole-body bone scans; or a number of spot 

views and 3D reconstructions, which were not usable for 

this study. As usable whole-body bone scan data is 

inherently 2D rather than 3D, ideal NM data should have 

only one DICOM image per series. Therefore, it was first 

necessary to split any NM series containing multiple 

DICOM images into an individual series per DICOM 

image prior to import. This splitting of NM series 

occurred as data was entering the import pipeline. The 

goal of this data QC and labeling pipeline was to select 

the optimal CT and NM series for labeling and prepare 

them for response evaluation criteria in solid tumors 

(RECIST) or prostate cancer working group (PCWG2) 

evaluation, respectively, which are standardized criteria 

for evaluating data from those modalities.
8,9

 

Our approach to high-throughput image intake and 

labeling combines: (1) automated anatomic and technical 

parameter classification, and (2) human review processes 

and HTML user interfaces. The pipeline workflow is 

shown in Figure 1 and subsequently described in detail. 

 

Figure 1: A flowchart describing the high-throughput 

image intake and labeling process. 

PHI cleaning and import 

PHI must be removed from images prior to import into 
the information system. Although trials typically require 
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sites to remove PHI before transfer to the central 
radiology facility, it can sometimes still be found in 
DICOM header tags or burnt into the image pixels. Our 
high-throughput system automatically scrubs the contents 
of standard tags where PHI can occur, such as the date of 
birth, patient weight, and patient address tags, as well as 
private tags that are freely used by scanner 
manufacturers. The list of DICOM tags to be scrubbed is 
contained in a configuration file that can be adjusted 
depending on study requirements. The system then 
generates a log file showing all fields that were scrubbed 
(Figure 2A) so that a human image analyst can review 
and report any PHI that was removed to the site and trial 
sponsor. This log file contains a row for each series that 
contained DICOM header PHI, with each row providing 
the subject ID, modality, study instance UID, series 
instance UID, DICOM tag number, and the PHI within 
that DICOM tag. This log file is then manually reviewed 
to determine whether the identified DICOM tags actually 
contain PHI and verify the type of PHI. A “Type of PHI” 
field is manually entered into the log file containing the 

PHI category (accession number, subject ID, etc.). A 
“type of PHI Location” field is also manually entered into 
the log file, which differs from the Type of PHI field only 
in cases where a mismatch occurs between the DICOM 
tag and the type of PHI (e.g. an address in the patient 

name DICOM tag).  

Burnt-in PHI is primarily present in reports saved as 
DICOM files or reformatted images, i.e. series having a 
small number of image slices. Therefore the system 
generated scrollable HTML pages of series having fewer 
than eight slices. The cutoff of eight slices was 
empirically determined based on previous observations of 
image series that did or did not contain PHI; as series 
containing greater than eight slices almost always contain 
true image data rather than these reports or reformatted 
images, these series are unlikely to ever contain burnt-in 
PHI. These HTML pages allowed rapid manual review 
for PHI that could be and redacted as shown (Figure 2B). 
Following burnt-in PHI redaction, the image data was 

imported into our information system.  

 

Figure 2: (A) An example log file generated from DICOM header data to review for PHI; (B) an example HTML 

thumbnail with PHI text present. Study-specific identifiers have been redacted for this figure (black bars). 

 

Figure 3: A CSV file is generated from the image data, with each row representing one series in the dataset. 

Parameters such as slice thickness, orientation, contrast, and anatomy are used to assign a technical QC score to 

each series. The best series for each time point are then selected for labeling in the label column. Study-specific 

identifiers such as subject ID have been redacted for this figure (black bars). 
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Automated anatomic labeling and QC 

The automated system automatically computed anatomic 

labels using a machine learning technique and quality 

control scores based on image acquisition parameters 

from the DICOM image header. It outputted a file 

containing technical acquisition parameters, anatomic 

coverage information, and a series QC score (Figure 3). 

Each series parameter calculation is described below. The 

technical QC score ranging from 0-5 is calculated based 

on DICOM header values, with 0-2 representing non-

usable series (non-axial scans, non-contiguous scans, 

slice thicknesses above 5 mm, non-usable modalities) and 

3-5 representing usable series. 

Subject ID: Extracted from DICOM header tag 

(0010,0020). 

Study date: Extracted from DICOM header tag 

(0008,0020) and modified to DD–MMM–YY format. 

Series instance UID: Extracted from DICOM header tag 

(0020,000e). 

Modality: Extracted from DICOM header tag 

(0008,0060). 

Number of slices: Calculated by reading through all series 

image slices using a for loop and iterating a slice counter. 

Total coverage (mm): Calculated by subtracting the 

second slice location from the second-to-last in the series. 

(Series may have a discontinuous overview image as their 

first or last slice, so these slices were selected instead.) 

Slice thickness (mm) – Taken from DICOM header tag 

(0018,0050). 

Spacing between slices (mm) – Taken from DICOM 

header tag (0018,0088). 

Contiguity: An Empirical Slice Thickness was first 

calculated by subtracting the second slice location in the 

series from the third location. If this value was less than 

or equal to Slice Thickness, the series was contiguous, 

otherwise it was non-contiguous. 

Rows: Taken from DICOM header tag (0028,0010). 

Columns: Taken from DICOM header tag (0028,0011). 

Orientation: For CT series, the array in DICOM header 

tag (0020,0037) was taken. If we define this as Array and 

its first value is Array[0], orientation was determined by 

the following rules:  

Array [0] >0.90 and Array[4] >0.90, Axial;  

Array [1] >0.90 and Array[5] <-0.90, Sagittal;  

Array [0] >0.90 and Array[5] <-0.90, Coronal.  

For NM series, this orientation column denotes whether 

the image was an original whole-body scan or a 

secondary screen capture. The following criteria were 

empirically determined after observing several test cases. 

If: 

Rows = 1024 and Columns = 256 or 512, the orientation 

is “Original”;  

Rows >512 and Columns >512, the orientation is “Screen 

Capture”;  

Rows ≤512 or Columns ≤512, the orientation is “N/A”.  

Contrast: This field was set to “Contrast” by default; 

during manual review it was changed to “Non-Contrast” 

where necessary. 

Anatomy: For CT series, we determined the anatomy 

using a deep learning approach involving a convolutional 

neural net (keras; theano as backend). For initial training, 

we manually categorized axial CT images into one of 

eight categories: head, shoulder, upper chest, middle 

chest, lower chest, abdomen, pelvis, and thigh, with each 

category containing 3300 images. The dataset was split 

into a training-validation-test set using a ratio of 

0.64:0.16:0.20. Image intensity was scaled from [-

1000HU,1000HU] to [0.0,1.0] (HU=Hounsfield Units) 

and the images were down sampled to a resolution of 

256x256. The neural network consisted of four 

convolutional layers and three fully connected layers, 

similar to that implemented by Roth et al.
10

 Max pooling 

and dropout (probability of 0.5) were used for each layer, 

while batch normalization was used for all convolutional 

and fully connected layers.
 11-13

 A batch size of 32 was 

used, and ReLU was uniformly used as the activation 

type.
14

 During training, the optimizer used was Adam 

(learning rate =0.001).
15

 Data augmentation included 

rotating the images and flipping them in both up/down 

and left/right directions. Training accuracy was 95.2% for 

the training set, 95.6% for the validation set, and 95.8% 

for the test set. When implementing the neural net in the 

high-throughput pipeline, a resulting anatomical 

classification was assigned to each image series slice. For 

each type of anatomy, the number of slices categorized 

into that anatomy was then multiplied by slice thickness 

to obtain an anatomy length (mm) for that series. Based 

on empirical observations of a data subset, rules were 

developed to automatically label the CT series into one of 

the following categories in Table 1. The table cells show 

the length of the scan classified as a particular anatomic 

region (Upper Chest, Abdomen, Pelvis) by the neural net 

and the corresponding label assigned by the system. 

For NM series, if the DICOM header tag (0054,0400) 

started with an A (e.g. AP, Ant, Anterior), the anatomy 

was classified as Anterior–Posterior (AP). A Posterior–

Anterior (PA) classification was given when the tag 

began with P (e.g. PA, Post, Posterior). If the tag was not 

populated, it was classified as Unknown, with manual 

review used to determine the anatomy. 
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Table 1:  Anatomic labeling rules for CT series 

anatomy based on neural net output. 

Upper chest 

(mm) 

Abdomen 

(mm) 

Pelvis 

(mm) 
Anatomic label 

≥50 ≥100 ≥100 
Chest–

Abdomen–Pelvis 

≥50 ≥140 <100 Chest–Abdomen 

<50 ≥100 ≥100 Abdomen–Pelvis 

≥50 <140 <100 Chest 

<50 ≥100 <100 Abdomen 

<50 <100 ≥100 Pelvis 

<50 <100 <100 Other 

Technical QC score: Each series was assigned a technical 

QC score ranging from 0 to 5, with 5 being the highest 

score. For CT series, this score was based on score 

components derived from the slice thickness, contrast, 

contiguity, and orientation fields. The slice thickness QC 

score criteria are shown in Table 2, with slice thicknesses 

between 3 mm and 5 mm defined as the optimal balance 

between slice resolution and image signal-to-noise for 

radiologists. 

If a CT series was non-contrast, the contrast QC score 

component was 3, or was 5 otherwise. The contiguity QC 

score component was 0 if the series was non-contiguous 

or contiguity could not be determined, or was 5 

otherwise. The orientation QC score component was 5 if 

the series was axial, or was 0 otherwise. The overall 

technical QC score for CT was then the minimum of 

these four categories. For NM series, the technical QC 

score was determined by whether it was an original 

image or screen capture. If the series was an original 

image, the score was 5; if the series was a screen capture, 

the score was 3; otherwise, the score was 0. 

Table 2:  The effect of slice thickness on the technical 

QC Score of CT images. 

Slice Thickness 

(mm) 
≤3 

>3 and 

≤5 

>5 and 

≤10 
>10 

Slice thickness QC 

score component 
4 5 3 1 

Manual review and editing of the classification results  

Next, the automated labeling and QC results were used to 

create an HTML page containing information for each 

series (Figure 4). During this step, a sagittal maximum 

intensity projection (MIP) image was calculated for all 

usable CT series to visually assess whether contrast was 

present in the tissue.
16

 The HTML pages were filtered so 

as to display only CT series having an axial orientation, 

and only NM series having a computed technical QC 

Score ≥3, as series with technical QC scores below 3 

were not candidates for labeling. 

 

 Figure 4: A thumbnail, MIP, and set of image series data for a chest-abdomen-pelvis series. The neural net 

classifier output is shown in the anatomy field. Study-specific identifiers have been redacted for this figure (black 

bars). 
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Figure 5: MIP images on the HTML page showing: (A) post-contrast chest CT series and (B) non-contrast chest CT 

series. A lack of contrast enhancement can be identified on the MIP images by a large difference in signal intensity 

between organ tissues (blue arrows) and bone structures (red arrows).   

Using the HTML page for CT series having eight or more 

slices, the anatomy field was manually reviewed to 

determine neural net output accuracy. In cases where the 

field did not match the respective thumbnail, it was 

manually corrected in the labeling/QC file. Similarly, if 

contrast was not observed in the MIP image, the file was 

edited accordingly. A lack of contrast in the tissue was 

identified by a large intensity difference between the 

organ tissue, which increases in intensity in the presence 

of contrast, and bone structures, which are consistently 

high-intensity regardless of the presence of contrast 

(Figure 5). 

On HTML pages for NM series, the anatomy field was 

manually reviewed to determine whether it was correctly 

classified as AP or PA. The orientation field was 

reviewed to determine whether the series was correctly 

classified as an original image or screen capture. 

Tagging images for labeling 

The goal of the system is to label the optimal image 

series for reading at each time point. After the 

labeling/QC file was manually reviewed and edited, 

automated software updated the label column, which 

flagged the selected optimal series. The software labeled 

a single set of required anatomy (Chest–Abdomen–Pelvis 

for CT, AP and PA for NM) per time point; for these 

series the label column was set to “Yes”. For CT series, 

the software first looks to label series having a score of 5, 

then 4, and then 3, if a higher score is not available. 

Within these scores, for CT series, the system looked to 

label full CAP series; if none is available, it separately 

labeled series that form full CAP coverage when 

combined. For NM series, the software labeled series 

having a score of 5, then 3 (if 5 was not available). 

Within these scores, the script looked to label one AP 

series and one PA series. 

Visit label reconciliation and labeling 

Visit labels are uniform time-point identifiers unique to 

each study (e.g., Screening, Treatment Cycle 4, etc.). 

Using automated software, visit labels were matched with 

study dates in the labeling/QC file. Visit numbers (e.g., 1, 

2, 3) were then matched with the visit labels in this file. 

Automated software was used to label all tagged series 

within our database with their appropriate anatomy, visit 

number, and visit label. Labeling was accomplished by 

matching the series unique identifier (series UID) of a 

tagged series in the .csv file with the series UID of that 

scan in the database. 

Table 3:  Image quality criteria reflected in the image 

QC report and their effect on the overall IQS. 

QC criteria Effect on IQS 

Images contain PHI at receipt IQS decreased to 4 

The scanner used at follow-up 

is different than the scanner 

used at screening 

IQS decreased to 3 

A required anatomical scan is 

missing 
IQS decreased to 1 

Anatomical coverage is 

incomplete 
IQS decreased to 1 

Slice thickness is less than 1 

mm 
IQS decreased to 2 

Slice thickness is greater than 

5 mm 
IQS decreased to 3 

Slice thickness is greater than 

10 mm 
IQS decreased to 1 

CT images are non-contiguous IQS decreased to 1 

CT images are non-contrast IQS decreased to 3 

NM images are screen capture IQS decreased to 3 
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Image QC report generation 

Using the labeled data in the database, a quality control 

(QC) report was automatically created for each time 

point. This QC report is included in the study records, 

ensures that the relevant sequences were acquired with 

the correct parameters and appropriate quality, and 

provides rapid feedback to the imaging site. QC 

parameters were automatically obtained from the labeled 

data, including subject ID, study date, and scanner 

information, along with modality-specific parameters 

such as slice thickness, contiguity, and contrast/non-

contrast for CT series. For NM series, rows, columns, and 

original/screen capture information were included. An 

overall image quality score (IQS) was then calculated for 

each time point and provided to the site as feedback. This 

IQS had a maximum value of 5 and could be decreased 

for any of the reasons shown in Table 3. An IQS of 5 was 

considered excellent quality data; an IQS of 3-4 was 

considered analyzable data; an IQS of 1-2 was considered 

partially analyzable data; and an IQS of 0 was considered 

non-usable data.  

RESULTS 

A total of 900 patients (9,006 total CT and NM time 
points, 204,492 total series) have been imported and 
analyzed to date using the high-throughput pipeline. 
HTML pages and log files were reviewed in batches of 
approximately 150 subjects each. Of the total series, 
27,630 (13.5%) were CT and 170,860 (83.6%) were NM. 
The large number of NM series was due to splitting of 
unusable 3D NM data into an individual series per 
DICOM image during import. The flowchart below 
(Figure 6) shows how the series were separated into 
usable versus not relevant/usable, then into labeled (for 
reading) versus not labeled. It shows there were many 
more image series per time point than needed to be 
labeled, and therefore the system had to sift through 
many series to identify the subset that should actually be 

labeled and read.  

 

Figure 6: A flowchart describing the process of 

filtering a large bolus of image series into usable CT 

and NM series, and then into the optimal series for 

labeling. 

During human review of automatic anatomic 
classification using the HTML pages, 4.3% of all usable 
series (5.5% of usable axial CT series and 3.0% of usable 
NM series) had incorrectly classified anatomy and 
required correction. Therefore, the neural network was 
95.7% accurate in classifying the imaged anatomy. Out of 
all CT series, 1,126 (4.1%) were non-contrast and 
therefore required that field to be manually updated. QC 
reports were successfully created for all 9,006 imported 
time points. 

The majority of incorrectly classified CT series were 
cases where a partially visible anatomy type was included 
in the anatomy label, for example when a chest image 
having partial abdomen coverage was labeled as Chest–
Abdomen. Some were also incorrectly classified when 
image artifacts from surgical hardware or abnormal 
image intensity ranges were present. The majority of 
incorrectly classified NM series (AP versus PA, and vice 
versa) were due to incorrect information in the DICOM 
header data; for example, a PA scan containing Anterior 
within its DICOM tag. We observed some series where 
Rows = 1024 and Columns = 1024 but the series was an 
original whole body scan (rather than a screen capture) 
and was adjusted during manual review. However, since 
the majority of 1024×1024 NM series were screen 
captures, our default screen capture classification for 

them was acceptable.  

Over a span of four months, all 204,492 image series 
were checked for PHI, then imported, characterized, 
labeled, and checked via QC report by a team of two 
people. The data is currently undergoing quantitative 
image analysis via lesion marking, to be followed by 

statistical analysis to achieve the study endpoints.  

DISCUSSION 

Implementing this high-throughput review process 

greatly decreased the average number of work-hours 

spent per time point. As each time point typically requires 

approximate 30 minutes to manually take through the de-

identification, importation, review, and labeling process, 

processing the 9,006 time points in our dataset would 

require 4,503 person-hours, equivalent to over two years 

of work. Using the pipeline described herein, one person, 

working eight hours a day, was able to process a batch of 

approximately 1,500 time points (~150 patients) every 

1.5 weeks, equivalent to 2.4 minutes per time point. 

Therefore, we achieved over a ten-fold reduction in the 

work-hours required to process this dataset. 

Previous studies have attempted to describe and improve 

data intake analysis workflow for clinical trial data in 

various settings. Meinecke et al focused on the 

importance of conducting pragmatic trials, where 

maintaining effectiveness under suboptimal conditions 

often encountered in clinical practice is necessary to 

conduct a useful study.
17

 Dunn et al have described a 

custom-built web application for organizing existing and 

future clinical data rather than the ad hoc data capture 
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systems used at many medical centers.
18

 Omollo et al 

have described a workflow for efficient clinical data 

management using only open-source software for 

application in low-resource regions.
19

 To our knowledge, 

this paper is the first to describe a high-throughput 

pipeline for rapid clinical image intake, labeling, and QC 

using machine learning and automation techniques. 

This pipeline can be applied to many types of imaging 

studies, whenever large datasets make manual review 

cumbersome and overly time consuming. Many hospitals 

and institutions use large picture archiving and 

communication system (PACS) technology to store 

significant amounts of data that can be queried on 

individual computers.
20

 However, this data is often not 

searchable beyond typical identifiers, such as patient 

information and scan date. This classification method 

could potentially be applied to search PACS images and 

obtain the highest-quality or most relevant image data 

needed for a particular research study, rather than the 

typical method of manually selecting useful image series 

from queryable data. In turn, this may let PACS systems 

be used as data input for studies exploring big data and 

data mining methods that continue to become more 

prevalent in the realm of clinical oncology.
21

 

A non-zero number of series are incorrectly classified by 

our high-throughput pipeline, approximately 4.3% of 

overall usable series. It may be possible to further reduce 

the number of mislabeled CT series with additional 

neural net training cases, but a small number of false 

outputs are likely to persist given the heterogeneous 

nature of image data. Similarly, for NM series, it will be 

difficult to correctly determine anatomy when its DICOM 

header data is incorrect, as that is the simplest and often 

more accurate way to obtain the anatomy. But as 

demonstrated in this study, the relatively high accuracy of 

these classification methods combined with using 

anatomic HTML pages to identify any false 

classifications remains far less work- and time-intensive 

than manual labeling methods. 

Future improvements to this method may help improve 

speed and accuracy. One possible avenue for 

advancement would be implementation of a neural net for 

classifying contrast and non-contrast CT series, which 

would remove the need to correct the non-contrast series 

during manual review. Similarly, by identifying abnormal 

non-anatomical text features within images, it may be 

possible to use machine learning techniques to flag series 

containing PHI, greatly reducing the time required for its 

removal. It may also be possible to improve the CT 

anatomy classification criteria shown in Table 1; 

although our empirically determined criteria worked well 

to obtain a low error rate, more optimized criteria may be 

attainable. 

In summary, a high-throughput pipeline was applied to 

greatly decrease the processing time of a large dataset of 

CT and NM images by accurately classifying image data, 

performing QC checks, selecting the best series, and 

tagging images for analysis. This method can be modified 

and applied to other imaging modalities as needed.  
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