In silico clinical trials: how computer simulation will transform the biomedical industry

Marco Viceconti, Adriano Henney, Edwin Morley-Fletcher


The term ‘in silico clinical trials indicates the use of individualised computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention. This review article summarises the research and technological roadmap developed by the Avicenna Support Action during an 18 month consensus process that involved 577 international experts from academia, the biomedical industry, the simulation industry, the regulatory world, etc. The roadmap documents early examples of in silico clinical trials, identifies relevant use cases for in silico clinical trial technologies over the entire development and assessment cycle for both pharmaceuticals and medical devices, identifies open challenges and barriers to a wider adoption and puts forward 36 recommendations for all relevant stakeholders to consider.


Computer modelling and simulation, Clinical trials, In silico medicine, Predictive medicine

Full Text:



Viceconti M, Henney A, Morley-Fletcher E, eds. In silico Clinical Trials: how computer simulation will transform the biomedical industry. Brussels: Avicenna Consortium 2016. DOI: 10.13140/RG.2.1.2756.6164

Solomon AK, Gold GL. Potassium transport in human erythrocytes: evidence for a three compartment system. J Gen Physiol. 1955;38:371-88. Available at

Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. European Journal Of Nuclear Medicine. 1997;24:299-304.

Bouxsein ML, Melton LJ, Riggs BL. Age and sexspecific differences in the factor of risk for vertebral fracture: a population-based study using QCT. Journal of bone and mineral research: J Bone Miner Res. 2006;21:1475-82.

Chabaud S, Girard P, Nony P and Boissel JP. Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris. J Pharmacokinet Pharmacodyn. 2002;29:339-63.

Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C. In silico design of clinical trials: a method coming of age. Critical Care Medicine. 2004;32:2061-70.

Duval V, Chabaud S, Girard P, Cucherat M, Hommel M, Boissel JP. Physiologically based model of acute ischemic stroke. Journal of cerebral blood flow and metabolism. J Cereb Blood Flow Metab. 2002; 22: 1010-8.

Kansal AR,Trimmer J. Application of predictive biosimulation within pharmaceutical clinical development: examples of significance for translational medicine and clinical trial design. Systems Biology. 2005;152:214-20.

Ribba B, Saut O, Colin T, Bresch D, Grenier E, Boissel JP. A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. Journal of Theoretical Biology. 2006;243:532-41. Available at

Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nature Reviews Drug Discovery. 2007;6:140-8.

Lomnicki A. Individual-based Models in Population Ecology. eLS. John Wiley & Sons, Ltd, 2001. Available at

Chabanas M, Luboz V and Payan Y. Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis. 2003;7:131-51.

Fernandez JW, Hunter PJ. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomechanics and Modeling In Mechanobiology. 2005;4:20-38.

Li NYK, Verdolini K, Clermont G. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PloS one. 2008;3: e2789. Available at

O'Rourke MJ, McCullough JP. A comparison of the measured and predicted flowfield in a patient-specific model of an abdominal aortic aneurysm. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine. 2008;222:737-50. Available at

Viceconti M, Pancanti a, Dotti M, Traina F, Cristofolini L. Effect of the initial implant fitting on the predicted secondary stability of a cementless stem. Medical & Biological Engineering & Computing. 2004;42:222-9.

Wolters BJBM, Rutten MCM, Schurink GWH, Kose U, Hart JD, Vosse FN VD. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Medical Engineering & Physics. 2005;27:871-83.

PriceWaterhouseCoopers. Pharma 2020: Virtual R & D Which path will you take ? 2008.

Petrini L, Trotta A, Dordoni E. A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case. Ann Biomed Eng. 2015. Available at

Hulme PA, Boyd SK, Heini PF, Ferguson SJ. Differences in endplate deformation of the adjacent and augmented vertebra following cement augmentation. Eur Spine J. 2009;18:614-23. Available at

Available at

Corrias A, Jie X, Romero L, M. J. Bishop,1 M. Bernabeu,1 E. Pueyo. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Philos Trans A Math Phys Eng Sci. 2010;368:3001-25. Available at

Dronne MA, Grenier E, Dumont T, Hommel M, Boissel JP. Role of astrocytes in grey matter during stroke: a modelling approach. Brain Research. 2007; 1138:231-42. Available at

Bousquet J, Jorgensen C, Dauzat M. Systems medicine approaches for the definition of complex phenotypes in chronic diseases and ageing. From concept to implementation and policies. Current Pharmaceutical Design. 2014;20:5928-44.

Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D. Enabling multiscale modeling in systems medicine. Genome Medicine. 2014;6:21. Available at

Wang RS, Maron BA, Loscalzo J. Systems medicine: evolution of systems biology from bench to bedside. Wiley Interdiscip Rev Syst Biol Med. 2015. Available at

Hood L, Balling R, Auffray C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnology Journal. 2012;7:992-1001.

Available at

Noble D. The future: putting Humpty-Dumpty together again. Biochem Soc Trans. 2003;31:156-8. Available at

Boissel JP, Kahoul R, Marin D, Boissel FH. Effect model law: an approach for the implementation of personalized medicine. J Pers Med. 2013;3:177-90. Available at

Boissel JP, Auffray C, Noble D, Hood L, Boissel F. Bridging Systems Medicine and Patient Needs. CPT: Pharmacometrics & Systems Pharmacology. Wiley-Blackwell, 2015.

Viceconti M, Cristofolini L, Toni A. Design revision of a partially cemented hip stem. Proc Inst Mech Eng H. 2001;215:471-8. Available at

Hose DR, Narracott AJ, Penrose JM, Baguley D, Jones IP, Lawford PV. Fundamental mechanics of aortic heart valve closure. J Biomech. 2006;39:958-67. Available at

Eslami M, Nikkhah SJ, Hashemianzadeh SM, Sajadi SA. The compatibility of tacrine molecule with poly (n-butylcyanoacrylate) and chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci. 2016;82:79-85. Available at

Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RL, Crawford MH. Population pharmacokinetics of racemic warfarin in adult patients. J Pharmacokinet Biopharm. 1985;13:213-27. Available at

Rodriguez B, Burrage K, Gavaghan D, Grau V, Kohl P, Noble D. The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol. 2010;88(1):130-4.

Visentin R, Dalla Man C, Kovatchev B, Cobelli C. The university of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial. Diabetes Technol Ther. 2014;16:428-34. Available at

Henney A, Superti-Furga G. A network solution. Nature. 2008;455:730-1. Available at

Lu Y, Boudiffa M, Dall'Ara E, Bellantuono I,Viceconti M. Evaluation of in-vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach. Med Eng Phys. 2015;37:1091-7. Available at

Nyman JS, Uppuganti S, Makowski AJ, Rowland BJ, Merkel AR, Sterling JA. Predicting mouse vertebra strength with micro-computed tomography-derived finite element analysis. Bonekey Rep. 2015; 4:664. Available at

Pate KM, Sherk VD, Carpenter RD, Weaver M, Crapo S, Gally F. The beneficial effects of exercise on cartilage are lost in mice with reduced levels of ECSOD in tissues. J Appl Physiol(1985). 2015;118:760-7. Available at

Borges P DN, Forte AE, Vincent TL, Dini D and Marenzana M. Rapid, automated imaging of mouse articular cartilage by micro CT for early detection of osteoarthritis and finite element modelling of joint mechanics. Osteoarthritis Cartilage. 2014;22:1419-28.

Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24:475-83. Available at

Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570-80. Available at

Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, et al. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. Bone. 2014;71-80. Available at

Qasim M, Farinella G, Zhang J, Li X, Yang L, Eastell R, Viceconti M. Patient-Specific Finite Element Minimum Physiological Strength as Predictor of the Risk of Hip Fracture: The effect of methodological determinants. Osteoporosis International. 2016;1-8. DOI: 10.1007/s00198-016-3597-4

Li X, Viceconti M, Cohen MC, Reilly GC, Carre MJ, Offiah AC. Developing CT based computational models of pediatric femurs. J Biomech. 2015;48:2034-40. Available at

Yuan Y, Bai X, Luo C, Wang K and Zhang H. The virtual heart as a platform for screening drug cardiotoxicity. Br J Pharmacol. 2015;172:5531-47. Available at

Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams GR, Francis JP. Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. Br J Pharmacol. 2013;168:718-33. Available at

Haddad T, Himes A, Campbell M. Fracture prediction of cardiac lead medical devices using Bayesian networks. Reliability engineering & system safety. 2014;123:145-57. Available at

Viceconti M, Hunter P, Hose R. Big data, big knowledge: big data for personalized healthcare. IEEE J Biomed Health Inform. 2015;19:1209-15. Available at pubmed/26218867.